On the limitations of low‐rank approximations in contact mechanics problems - Archive ouverte HAL
Article Dans Une Revue International Journal for Numerical Methods in Engineering Année : 2023

On the limitations of low‐rank approximations in contact mechanics problems

Résumé

Typical strategies for reducing the computational cost of contact mechanics models use low-rank approximations. The underlying hypothesis is the existence of a low-dimensional subspace for the displacement field and a { non-negative low-dimensional subcone for the contact pressure}. However, given the local nature of contact, it seems natural to wonder whether low-rank approximations are a good fit for contact mechanics or not. In this paper, we investigate some of their limitations and provide numerical evidence showing that contact pressure is linearly inseparable in many practical cases. To this end, we consider various mechanical problems involving non-adhesive frictionless contacts and analyse the performance of the low-rank models in terms of three different criteria, namely compactness, generalization and specificity.
Fichier principal
Vignette du fichier
preprint.pdf (1.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03918970 , version 1 (25-10-2023)

Licence

Identifiants

Citer

Kiran Sagar Kollepara, José M Navarro‐jiménez, Yves Le Guennec, Luisa Silva, José V Aguado. On the limitations of low‐rank approximations in contact mechanics problems. International Journal for Numerical Methods in Engineering, 2023, 124 (1), pp.217-234. ⟨10.1002/nme.7118⟩. ⟨hal-03918970⟩
77 Consultations
62 Téléchargements

Altmetric

Partager

More