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On the limitations of low rank approximations in

contact mechanics problems

Kiran Sagar Kollepara José V. Aguado Luisa Silva
Yves Le Guennec José M. Navarro

Abstract

Typical strategies for reducing the computational cost of contact me-
chanics models use low-rank approximations. The underlying hypothesis
is the existence of a low-dimensional subspace for the displacement field
and a non-negative low-dimensional subcone for the contact pressure.
However, given the local nature of contact, it seems natural to wonder
whether low-rank approximations are a good fit for contact mechanics or
not. In this paper, we investigate some of their limitations and provide
numerical evidence showing that contact pressure is linearly inseparable
in many practical cases. To this end, we consider various mechanical prob-
lems involving non-adhesive frictionless contacts and analyse the perfor-
mance of the low-rank models in terms of three different criteria, namely
compactness, generalization and specificity.

Keywords: contact mechanics, variational inequalities, reduced order mod-
els, low-rank approximation

1 Introduction

Reduced order models (ROM) have been the key to the application of numerical
models in near real-time simulations. ROMs reduce the computational complex-
ity of discretized partial differential equations, which permits their usage in a
multi-query context. ROMs have found successful applications in a wide vari-
ety of problems such as design optimization [1], uncertainty quantification [2],
inverse problems [3], optimal control [4], real-time monitoring [5], and others.
At the core of these applications, is the idea of solving a parametrized problem,
where one or more input parameters of the numerical model influence the state
of the system. ROMs are used to generate parametric models that are able to
deal with multi-query situations efficiently.

The underlying principle behind many ROMs is the low-rank hypothesis
that states that many real-life mathematical/numerical models defined in high-
dimensional spaces can be fitted using low-dimensional spaces. Consequently,
models can be expressed using only a few degrees of freedom that have been
intelligently selected. Typically, this is done using dimensionality reduction
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techniques that involve computing reduced bases (RB) for the unknowns of the
problem. The reduced bases contain the underlying physical structure, thus
spanning the low-dimensional space where the model lies.

ROMs have been applied extensively to unconstrained problems such as ther-
mal and mechanics problems [6, 7] and also to mixed problems with equality
constraints such as the incompressibility condition in Stokes and Navier-Stokes
flow problems [8]. Application of ROMs to variational problems with inequality
constraints (also referred to as variational inequalities) has been more recent [9–
15]. Although the scope of this article is limited to contact mechanics, several
other applications of variational inequalities are found in porous media flow
problems [16], cavitation problems in lubrication systems [17], anti-plane fric-
tional problems [18] and even in financial trading problems [10]. Inequality
constraints appear in mechanical problems with obstacles or multi-body me-
chanical problems where there is a possibility of contact between bodies and
obstacles, or with other bodies [19]. Moreover, the region of contact is unknown
a-priori.

Inequality constraint problems are often posed in mixed form with the so-
called Karush–Kuhn–Tucker (KKT) conditions that force the Lagrange Multi-
pliers to be non-negative. Enforcing this condition in ROMs is non-trivial as
traditional methods of computing RBs do not preserve the non-negative nature
of the input information.

One of the first works on reducing the contact mechanics problem [9], pro-
posed the idea of using the contact pressure snapshots directly to define a non-
negative subspace. Both displacement and contact pressure snapshots were
generated in a greedy fashion using error estimators. Fundamental aspects of
the reduced problem, such as the existence and uniqueness of the solution and
inf-sup stability were also explored.

Compression of snapshots to create a reduced basis was studied in [11], where
Non-Negative Matrix Factorization (NNMF) was used to compute a basis with
user-specified cardinality, but does not provide any means to specify truncation
tolerance for the reduced basis. Also, error estimators for greedy sampling of
parametric space are developed.

Algorithms to sort a precomputed set of snapshots, in order of importance,
to create a compact basis are explored using projection methods in [10] and [14],
using an Angle-Greedy and Cone-Projected Greedy (CPG) procedures, respec-
tively. The former does not take into account non-negative restrictions, whereas
the latter uses a cone projection involving non-negative coefficients. This makes
CPG more efficient in capturing the contact pressure subcone.

The hyper-reduction approach in [13] defines a subdomain of the contact
problem containing the most important points. The reduction is achieved with
the usage of a POD basis for displacement and resolution of the weak form on
the reduced integration domain. Reconstruction of displacement solution on
the full domain is relatively straightforward using the POD basis. On the other
hand, the reconstruction of contact pressure involves solving a non-negative
least square problem using the snapshots.

A Craig-Bampton based resolution of the contact problem was discussed
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in [15] where the reduction of the displacement field was achieved using the
Krylov subspace method. The Lagrange Multiplier method was not reduced
under the assumption that the number of contact dofs remains small.

All of these works are based on a Lagrange Multiplier approach to solve
the inequality constrained reduced problem. An exception to this trend is [12],
where the penalty approach is used. The Empirical Interpolation Method (EIM)
is employed for efficient computation of barrier functions that restrict the solu-
tion to the feasible domain.

Most contributions build reduced models on problems with static contact
pairs, meaning contact pairs do not change with the state of the system. How-
ever, [14] considers dynamic contact pairs, with node-to-segment formulation.
To efficiently evaluate non-linearities due to dynamic pairing, they use EIM to
define an affine decomposition of distance functions.

Most ROMs discussed above involve an implicit assumption that contact
pressure space can be approximated by a low-dimensional subspace, i.e., it satis-
fies the low-rank hypothesis. However, given the local nature of contact, the ap-
plicability of the low-rank hypothesis may be questionable. As already pointed
out in Reference [13], singular values for contact pressure decay slowly compared
to those of displacement field, the first hint on lack of low-dimensional subspace.
This article focuses on studying the validity of the low-rank hypothesis to the
variational inequality problems, specifically contact mechanics problems and its
contact pressure field. We show that in many practical cases, it seems difficult to
justify the existence of low-rank representation. We provide a quantitative as-
sessment of low-rank approximations’ robustness through validation metrics [20]
like compactness, generalization ability and specificity.

The paper is organized as follows: The variational inequalities for contact
mechanics are first introduced in Sec. 2.1 and 2.2. Then a generic methodology
of reduced modelling in variational inequalities is discussed in Sec. 2.3. In Sec. 3,
a reduced model of a simple 1D obstacle problem is demonstrated, followed by
the main argument of this article on the linearly inseparable nature of Lagrange
multipliers as a limitation of the low-rank approach. To endorse this argument
quantitatively, validation metrics are defined in Sec. 4. The arguments about
linear inseparability are supported using validation metrics for specific numerical
examples in Sec. 5. Finally, concluding arguments about linear inseparability
and a few perspectives on circumventing the limitations due to lack of low-rank
structure are given.

2 Model problem and basic low-rank formula-
tion of contact problems

In this section, mechanical problems with constraints on the displacement field
are discussed. Linear elastic and small deformation problems are considered,
keeping the evaluation of internal energy simple. The inequality constraints
may be a result of the presence of either an obstacle or a second body in the
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Figure 1: Kinematic description of mechanical problems with possibility of con-
tact. Left: Type 1: Body-obstacle problem and Right: Type 2: Two body
problem

domain, with the possibility of contact between different surfaces in the de-
formed configuration. For convenience, these problems will be referred to as
Type-1 problems, involving a deformable body and a fixed obstacle, and Type-
2 problems, involving two deformable bodies. A schematic of the two types
of contact problems is shown in Fig. 1. Contact phenomena like friction and
adhesion are neglected. The resolution of contact mechanics problems depends
on computing the distance between the surfaces of bodies involved. As the
evaluation of distance is not a trivial task, different strategies exist based on
underlying simplifications. For the generic case of non-conforming meshes, this
paper uses node-to-segment formulation along with the closest point projection.
The details to these approaches can be found in [19, 21].

2.1 Model problem

The generic weak form of a parametrized mechanical problem involving contacts
is described by the following inequality constrained minimization problem:

u = argmin
v∈V

1

2
a(µ;v,v)− f(µ;v)

s.t. k(µ,v;v)(x) ≤ g(µ,v)(x) on Γ2

(1)

where

• a(µ;v,v) is strain energy function and f(µ;v) is the work contribution
by the external forces. The operators are defined ∀v ∈ V and ∀µ ∈ P,
where V be an appropriate function space for displacement and P is the
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parametric space. Note that µ may not be necessarily a scalar and the
parametric space P can be possibly multidimensional.

• k(µ,v;v)(x) and g(µ,v)(x) are the distance functions that indicate sepa-
ration between bodies, defined conveniently on surface Γ2. The first term
indicates the contribution of displacement field v to the distance and the
second term indicates the distance in the undeformed configuration.

NOTATION
Strong and weak forms are distinguished using notations adopted from [14].
Linear and bilinear operators that appear in weak formulations are expressed in
the format o(·; ·, ·), where the non-linear dependencies and linear dependencies
are separated by the semi-colon ’;’. On the other hand, strong form functions
are expressed in the format o(·; ·, ·)(·), distinguished from weak forms using
an additional argument which is the geometric position. The same applies to
linear forms expressed as o(·; ·) and o(·; ·)(·). Note that the notation u and v
are used for both continuous and discrete versions of displacement fields.

Both Type-1 and Type-2 problems can be expressed in the above form. As
a result of the node-to-segment formulation and closest point projection, the
distance function for Type-2 can be expressed as:

k(µ,v;v)(x) =
[
v2(x2)− v1(x̄1)

]
· n1

g(µ,v)(x) =
[
x2 − x̄1

]
· n1

(2)

where x̄1 is the nearest to point x2, on the surface Γ2, as shown in Fig. 1.
The pairing (x̄1, x2) is evaluated in the deformed configuration and hence is
dependent on the displacement field. This forces the distance function k to
have an implicit non-linear dependence on displacement, apart from the explicit
linear dependence that is evident in the expression. For Type-1 problem, v1(x̄1)
in the above expressions vanishes as the obstacle is fixed.

2.2 Mixed form

The constrained minimization problem can be expressed in a mixed form by
introducing Lagrange multipliers and KKT conditions. The resulting opti-
mization problem can be expressed as a saddle point problem of the Lagrangian
functional:

(u, λ) = argminmax
v∈V,η∈W+

L(v, η) (3)

where

L(v, η) = 1

2
a(µ;v,v)− f(µ;v) + b(µ,u; η,u)− d(µ,u; η) (4)

5



and the distance function is expressed by following weak forms:

b(µ,u; η,u) =

∫
Γ2

η k(µ,u;u)(x) ∂Γ

d(µ,u; η) =

∫
Γ2

η g(µ,u)(x) ∂Γ

W+ indicates a non-negative function cone for contact pressure defined on the
surface Γ2. The condition λ ≥ 0 is implied naturally as W+ is a function cone
and admits a physical meaning because λ is equivalent to contact pressure. A
negative contact pressure implies traction, in other words, adhesion between
contact surfaces which contradicts the simplifying assumptions.

The KKT conditions associated to the optimizer (u, λ) ∈ V ×W+ of (4) can
be expressed as follows:

a(µ;v,u)− f(µ;v) + b(µ,u;λ,v) = 0, v ∈ V
b(µ,u; η,u)− d(µ,u; η) ≤ 0, η ∈ W+

b(µ,u;λ,u)− d(µ,u;λ) = 0

(5)

The discrete equivalent of the Lagrangian functional in (4) can be derived by
introducing finite element spaces Vh ⊂ V and W+

h ⊂ W+:

Lh(vh,ηh) =
1

2
vhTK(µ)vh − vhTf(µ) + ηhT

[
C(µ,vh)vh − g(µ,vh)

]
(6)

where vh ∈ RNh
u and ηh ∈ RNh

λ . Here, Nh
u and Nh

λ indicate the number of
respective finite element degrees of freedoms (dofs). Given the finite element
basis {Ni} for displacement, a vector field, and {Mj} for contact pressure, a
scalar field defined on potential contact surface, the discrete operators can be
defined as:

K(µ)ij = a(µ;Ni,Nj)

C(µ,vh)ij = b(µ,vh;Mi,Nj)

and the vectors f and g are defined as:

f(µ)i = f(µ;Ni)

g(µ,vh)i = d(µ,vh;Mi)

The bilinear and linear terms b and d are non-linear w.r.t. the displacement
field v and the parameter µ, which is reflected in discrete form as C(µ,vh) and
g(µ,vh) respectively. Using the above operators, the discrete form of the KKT

conditions in (5) for the optimal solution (uh,λh) ∈ RNh
u ×RNh

λ can be written
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as:

K(µ)uh − f(µ) +CT (µ,uh)λh = 0

λh ≥ 0

C(µ,uh)uh − g(µ,uh) ≤ 0

λhT [C(µ,uh)uh − g(µ,uh)] = 0

(7)

Various strategies to linearize the above problems exist, including fixed point
and Newton-Raphson methods. The details of above formulations and lineariza-
tion strategies are not detailed here, but can be found in references [19, 22, 23].
Finite Element computations for the contact problems in this paper were per-
formed using a Newton-Raphson approach.

2.3 Low-rank approach to parametrized contact mechan-
ics

Resolution of parametric contact mechanics problems is not only hindered by
the curse of dimensionality, but also by the non-linear inequality constraints.
Low-rank approaches can potentially address this issue by reducing the number
of constraints [11, 14]. The idea behind ROMs is to split the cost of computation
into two stages. The offline stage, where most of the computational complexity
is resolved, consists of extracting the underlying structure of the system. This
is done by generating a RB from a set of solutions from the high-fidelity solver.
These solutions are usually referred to as snapshots in ROM literature. This
step is typically performed only once to create the reduced model. The online
step is performed every time a new query is submitted, in which the on-demand
solution is computed using the reduced model, which is cheaper to evaluate than
the high-fidelity model.

Using notation from the previous section, the high-fidelity (finite element)
space is denoted by Vh. Let the reduced subspace be denoted by Vr = span(Φ),
where Φ denotes the corresponding RB. In the online stage, solutions in the
subspace Vr are sought to approximate the high-fidelity solution. In discrete
sense, Φ is a matrix with each column corresponding to a basis vector. Then,
the approximation ur in the subspace can be expressed as:

ur ≈ Φû û ∈ RNr
u (8)

All reduced degrees of freedom and reduced operators are indicated by a hat ·̂
For constructing the RB Φ in the offline stage, a finite subset of the paramet-

ric space Ptr ∈ P is explored and an approximate subspace Vr is extracted from
the set of high-fidelity snapshots from the training set. The number of degrees
of freedom associated to the reconstruction problem in the online stage is same
as the cardinality of basis Φ, and it influences the efficiency of the online phase.
A low-rank basis Φ will, therefore, lead to a lower number of unknowns resulting
in an efficient RB. As this assumption holds true for many physical models, RB
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methods are widely applicable. Otherwise, it may be difficult to generate a RB
that approximates well the system behaviour in the entire parametric space.

Reduction of variational inequality problems poses additional complications
that other mixed problems do not face. In mixed problems like incompressible
Stokes flow or incompressible elasticity, the conservation of mass equation is
essentially seen as an equality constraint and the pressure is seen as a Lagrange
multiplier or penalization. This constraint is always active and, therefore, must
always be included in the linearized discrete system. Also, negative pressures
are not explicitly prohibited, in neither the full nor the reduced solvers [8], as
the momentum equation only includes the gradient of pressure and is unaffected
even if the whole pressure field is globally lifted by a constant value. On the
other hand, for inequality constrained problems, only a subset of inequality
constraints satisfy the equality and the inactive ones cannot be included in
the linearized system matrices. Resolution of active and inactive constraints
becomes part of the linearization scheme, along with the elimination of negative
Lagrange multipliers.

As seen in 2.2, variational inequalities involve primal and dual unknowns,
uh and λh. Therefore, in the reduced sense, one might introduce the terms
primal and dual bases corresponding to the two unknown variables. Reduction
of variational inequalities typically involves computing the reduced primal and
dual bases, and then finding a solution in the spaces spanned by these bases.
Such approaches are discussed in [9, 11, 14].

2.3.1 Offline stage

As two finite element subspaces were defined for the mixed problem in Sec-
tion 2.2, similarly two reduced spaces must be defined for the reduced problem.
For the primal variable, an orthogonal basis is generated using Proper Orthogo-
nal Decomposition (POD). In POD setting, high-fidelity snapshots are generated
over the training set Ptr are collected. Let Str = {uh

s}NS
s=1 be a matrix contain-

ing the training set snapshots. Left singular vectors of the snapshot matrix are
taken as the RB, as shown in (9). This can be done by arranging snapshots as
columns of a matrix and using the Singular Value Decomposition (SVD) or the
Principal Component Analysis (PCA) methods. The most important singular
vectors are selected using the singular values and the truncation tolerance δ.

Φ← svd(Str, δ) (9)

Need for a non-negative basis: Computing the dual basis is more compli-
cated than the primal basis. The dual field i.e. the Lagrange multiplier field
must satisfy the non-negativity constraints. In case of the contact problems
without adhesive and cohesive surfaces, this constraint admits a physical mean-
ing as negative contact pressure cannot be admitted, as discussed in Section 2.2.
An orthogonal basis generated using projection based methods cannot satisfy
such constraints, as it is surely bound to contain negative entries. To ensure
such constraints, one way is to define a subcone for the dual field instead of
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a subspace. A function cone, unlike a function space, is spanned by a set of
non-negative basis functions and non-negative coefficients. In fact, W+ and
W+

h in Section 2.1 are also cones. By extension, a subcone, unlike a subspace,
must be equipped by a non-negative RB and must be spanned by non-negative
coefficients.

W+
r = span+(Θ) =

N∑
i=1

λ̂iθi , λ̂i ≥ 0 (10)

where Θ and {θi}Ni=1 are the dual RB and dual RB functions. λ̂is are the
dual reduced dofs.

Methods without a Lagrange Multiplier
The non-negativity condition appears because of the Lagrange Multiplier for-
mulation, thereby forcing the necessity of a non-negative dual basis. In a
penalty formulation, such as the barrier method in [12], the contact pressure
variable does not appear explicitly and therefore, there is no need for comput-
ing a dual basis. However, this comes at the cost of additional approximation,
as the penalty approach permits a small but non-zero penetration. Any at-
tempt at minimizing the penetrations by increasing the penalty parameter
leads to ill conditioning of the numerical problem.
The Augmented Lagrange Multiplier Method (ALMM) circumvents these lim-
itations. In this approach, the Lagrange Multiplier is initialized at zero value,
and the contact pressure contributed by penalty is added to the multiplier
progressively. Despite the intervention of the penalty term, the non-negativity
condition appears indirectly when the Lagrange Multipliers are updated. In
a low-rank setting, the update step will potentially need a non-negative basis
to avoid reconstruction of the full Lagrange Mulitplier. Thus, the necessity of
a non-negative dual basis prevails.
In the Nitsche method[24], the contact pressure is derived as surface traction
from the constitutive model. Thus, the Lagrange Multiplier does not appear
explicitly. However, the operators that enforce the non-penetration constraint
might show dependence on the constitutive model, as mentioned in [19, Chap-
ter 6], which may lead to additional difficulties in creating a reduced model in
case of complex constitutive models.

Once the reduced subspace Vr and subcone W+
r are available, the reduced

problem can be generated from (5), replacing the continuous spaces V and W+

with the reduced spaces Vr and W+
r. The reduced KKT conditions on the

solution (û, λ̂) ∈ RNr
u × RNr

u can be expressed as:
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K̂(µ)v̂ − f̂(µ) + ĈT (µ, v̂)λ̂ = 0

λ̂ ≥ 0

Ĉ(µ, û)û− ĝ(µ, û) ≤ 0

λ̂T (Ĉ(µ, û)û− ĝ(µ, û)) = 0

(11)

where the discrete reduced operators are built by introducing the reduced basis
functions ϕ and θ

K̂(µ)ij = a(µ;ϕi,ϕj)

Ĉ(µ, û)ij = b(µ,ur; θi,ϕj)

f̂(µ)i = f(µ;ϕi)

ĝ(µ, û)i = d(µ,ur; θi)

with ur = Φû
Generation of dual basis: Non-negative nature of the dual RB Θ prevents us
from using orthogonal decompositions of Lagrange Multiplier snapshot matrix
Λ. To this end, non-negativity preserving decompositions have been explored
by various authors. Non-negative matrix factorization (NNMF) method [25]
can be used to decompose a non-negative matrix, such as Λ into two low-rank
non-negative matrices W, H, such that Λ ≈WH. The left-hand matrix W is
used as the dual RB in [11].

On the other hand, one could directly use the snapshot vectors as the ba-
sis vectors. This was the approach of [9], where the possibility of non-unique
dual solution is also discussed, as snapshot vectors are not guaranteed to be lin-
early independent. Also, the number of dual dofs increase with the number of
snapshots, preventing optimal reduction of the system. A greedy snapshot selec-
tion method based on the criteria of maximizing the volume of the reduced cone,
namely the Cone-Projected Greedy (CPG) algorithm, was proposed in [14]. This
algorithm creates a dual RB by greedily selecting snapshots from the snapshot
matrix, attempting to create a more compact basis in comparison to using the
full snapshot matrix. The algorithm is based on projection ΠΘ of a vector λ on
a vector cone Θ,

ΠΘ(λ) :≈ Θα , where α is argmin
γ

||λ−Θγ|| ∀γ ≥ 0 (12)

The greedy algorithm evaluates the error between each snapshot and its projec-
tion on the cone spanned by previously selected snapshots, and then adds that
snapshot with maximum cone projection error. The process continues until the
cone projection error is within a set tolerance. [10] had also proposed a similar
algorithm called Angle-Greedy algorithm, but the projection error is calculated
based on computation of the angle between the candidate snapshot vector and
the space, and not the cone, spanned by the previously selected snapshots i.e.
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it does not place non-negativity constrain on the coefficients γ in (12). This is
not the best way of selecting snapshots for variational inequality problems since
solutions are sought in the reduced cone, and not the entire reduced space.

2.3.2 Online Stage

The non-linear reduced problem in (11) is solved using the fixed-point iterations.
The linearized problem, for a fixed point method, at an iteration level p can be
expressed as follows:

[
K̂ ĈT

A(µ, û
p)

ĈA(µ, û
p) 0

] [
ûp+1

λ̂p+1
A

]
=

[
f̂

ĝA(µ,u
p)

]
(13)

The subscript A indicates the active set of reduced contact constraints, i.e. the
constraints that satisfy the equality and force the solution to lie on the bound-
ary of the feasible region. With all reduced operators defined, the fixed point
algorithm is stated in Alg. 1.

Algorithm 1 Online phase

1: Input: Queried value of parameter µ
2: Given: Primal basis Φ and dual basis Θ

Reduced operators K̂, f̂ (possible to build offline)
3: Initiate boolean array mask active with one random element set to True.
4: while û, λ̂ not converge do
5: Build constraint operators C(µ, ûp), g(µ, ûp) using FEM
6: Project constraint operators on RBs

Ĉ(µ, ûp) = ΘTC(µ, ûp)Φ
ĝ(µ, ûp) = ΘTg(µ, ûp)

7: Filter-out rows that are not in active set:
Ĉ(µ, ûp)A = Ĉ(µ, ûp)[mask active, :]
ĝ(µ, ûp)A = ĝ(µ, ûp)[mask active]

8: Solve system (13)

9: Set λ̂p+1[mask active]← λ̂p+1
A and λ̂p+1[NOT mask active]← 0

10: Update active constraints set

mask active[i] =

{
False if λ̂p+1

i < 0

True if (Ĉûp+1 − ĝ ≥ 0)i
11: end while
12: Reconstruct u = Φû and λ = Θλ̂
13: Output: u,λ

Construction of operators: For an efficient ROM, the construction of non-
linear operators must also be inexpensive. This is not the case in Alg. 1, where
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the full order operators C(µ, û) and g(µ, û) are constructed in each iteration
(Step 5). Affine decompositions of the nonlinear constraint operators using the
EIM are discussed in [14]. EIM decomposition of the constraint operators fur-
ther splits computational complexity into offline and online stages, by selecting
the so-called “magic points” that are a small subset of all potential contact
nodes where the nonlinear terms are evaluated in the online phase. The hyper-
reduction method also permits efficient computation of operators by selecting
fewer quadrature points [13]. The distance functions are then computed only
on the selected quadrature points. This is crucial to solve problems where the
contact pairs are strongly dependent on the displacement field. However, the
efficient construction of constraint operators is not covered in this paper, and
focus is maintained on the non-negative dual space and its low-rank approxi-
mation.

3 Illustrative case

In this section, the Type-1 problem of a 1D elastic rope-obstacle problem from [9,
11, 12] is considered. The geometry of the problem enjoys further simplification
of static contact pairs. In other words, each point on the elastic rope can come
in contact with a unique point on the obstacle, thereby stripping the distance
functions k and g of their non-linear dependence on the displacement field u.

The parametrized model of the elastic rope with obstacle function can be
expressed as:

ν∇2u(x) = f on x ∈ [0, 1]

u(0) = u(1) = 0

u(x) ≥ g(x, γ) on γ ∈ [−0.5, 0.5]
(14)

where the parameterized obstacle function is defined as:

g(x, γ) = −0.2(sin(πx)− sin(3πx))− 0.5 + γx (15)

and the quantities ν = 30 and f = 250 are independent of the parameter γ.
Snapshots are generated in the training set, Ptr ∈ P consisting of 10 equidis-

tant points in the parametric space P defined in (15). The deformation and
contact pressure snapshots are shown in Fig. 2. The primal RB is built us-
ing the POD approach and dual RB is created using the cone-projected greedy
algorithm of [14].

The reconstruction errors are shown in Fig. 3 for the two cases of full and
truncated dual RB. As expected, the points in the training set show very low
reconstruction error, and the points outside the training set show a moderate
error. The only exception at γ = −0.35 where reconstruction with full RB is
highly accurate because the contact area does not change in the regime γ ∈
[−0.4,−0.3] and the training set has two snapshots in this region. When dual
RB is truncated, some points in the training set achieve the same error level
as that of points outside the training set. These points correspond to the same
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Figure 2: Sample snapshots for γ ∈ Ptr ⊂ [−0.5, 0.5]. Left: Deformation u(x, γ)
and obstacle g(x, γ) snapshots. Right: Contact pressure snapshots

Primal basis Dual basis

(POD) (CP-greedy)

Full
Tolerance ε ε

Rank 11 11

Truncated
Tolerance ε 2× 10−1

Rank 11 7

Table 1: Truncation tolerances and ranks for each basis for the rope-ostacle
problem. ε indicates numerical precision

dual snapshots that were eliminated by the truncation procedure of the CPG
algorithm. Another relevant observation is that the number of active dofs of
the reduced dual solution λ̂ is small for all reconstruction cases. For points in
the training set, λ̂ has exactly 1 active dof, whereas for the points outside the
training set, it has a maximum of 2 active dofs. This is due to the fact that
the dual basis is composed primarily of snapshots and does not undergo any
compression like in the case of the primal basis generated by POD.

In general, any efficiently generated reduced basis has its vectors arranged in
order of importance. In case the basis consists of left singular vectors, generated
by SVD, the decreasing importance of basis vectors is indicated by the singular
values. This is a very useful indication of the rank of the subspace. Even though
the dual basis is not computed using SVD, it can still be useful to compute
singular values and assess their decay. This evolution of singular values, seen in
Fig. 4, shows that the decay is slow compared to the primal variable.

Also, the discussions in previous sections highlight the fact that dual basis Θ
cannot be truncated without a significant loss of accuracy. This is also evident
from Table 1, even a truncation tolerance as high as 0.2 leads to truncation of
just four vectors in dual RB.

The above observations are explainable by the hypothesis that the dual snap-
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Figure 3: Primal reconstruction (H1-norm) errors for points in and outside the
training set for the rope-obstacle problem. Left: Full Rank. Right: Full rank
primal and truncated dual RB
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Figure 4: Decay of singular values (cumulative and normalized) for the rope-
obstacle problem. A similar figure is also given in Reference [13, Figure 4]
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Figure 5: Sparsity pattern of dual snapshots for the rope-obstacle problem.
Each row corresponds to a snapshot

shots are highly “inseparable” and do not lie in a low-dimensional subcone. Each
contact pressure snapshot in Fig. 2 is linearly independent of the other due to
difference in the contact area. Hence, if any snapshot is picked randomly from
this figure, it cannot be reasonably approximated by any linear combination of
the rest of the snapshots. In other words, each snapshot vanishes outside the
contact zone, and this zone is almost “unique” for each snapshot. For a par-
ticular snapshot to be reasonably approximated, other snapshots with similar
contact zones are needed. Therefore, the elimination of snapshots from the dual
basis leads to a drastic increase in the reconstruction error for the correspond-
ing parametric values in the training set. The dual variable, therefore, not only
needs special treatment due to its positivity constraints but is also highly insep-
arable because of sensitivity to contact position and area. The inseparability is
also evident in the non-zero pattern (“spy” plot) of dual snapshots visualized in
Fig. 5, where most rows have an almost unique sparsity pattern. It is unlikely
that a subspace whose members show varying sparsity patterns will admit a
low-dimensional behaviour.

More numerical examples are explored to study the lack of low-rank be-
haviour in the Sec. 5.

4 Metrics for low-rank methods

In this section, we introduce the validation metrics [20], that provide a quantita-
tive evaluation of the robustness of low-rank models. Validation metrics defined
in [20] identify three different measures for this purpose:

• Compactness: As the name suggests, this metric is a measure of dimen-
sionality of the reduced space. Reference [20] defines compactness as the
squared sum of the first m singular values of the snapshot matrix. This
metric is similar to the decay of singular values studied in the previous
section in Fig. 4. However, an alternative definition given by (16) is used
here. The new definition allows extending the concept of compactness to
CPG reduced bases, where equivalents of singular values are undefined.
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Also, in case of an orthogonal basis, this definition is equivalent to the
normalized singular values used in Fig. 4.

C(m) :=

∣∣∣∣Str −ΠΨ[:m](Str)
∣∣∣∣
F

||Str||F
(16)

where Str is a matrix containing (either primal or dual) snapshots in Ptr
arranged column-wise. ΠΨ[:m](Str) is a projection operators that projects
each column in Str on the first m vectors of the basis Ψ (indicated in
python notation by Ψ[: m]). The snapshot matrix Str, projection opera-
tor Π and the basis Ψ are generic symbols and are used in the following
combinations, indicated by the following labels:

Label in figures Snapshots in Projection operator Basis
Str Π Ψ

primal orth Primal Orthogonal POD primal basis Φ

dual orth Dual Orthogonal POD dual basis Υ

dual cone Dual Cone CPG dual basis Θ

The Frobenius norm is chosen in (16), because it is a natural choice for a
POD/SVD basis that contains the best rank-wise approximations in the
sense of Frobenius norm, but other norms can be also be used. This is ac-
tually equivalent to the original definition of compactness in [20], because
in the case Ψ consists of the left singular vectors, compactness corresponds
to cumulative energy of singular values.

For the dual field, the metric is given using two kinds of projections:
orthogonal and CPG. Though the dual CPG metric is more relevant to
the inequality constrained problems, the dual orthogonal metric is also
included as it is more intuitive due to correspondence with the singular
values.

• Generalization Ability : This metric measures the ability of the reduced
basis to approximate parametric instances that are not in the training set.
It is computed by using a leave-one-out approach on the training set to
generate a m-rank basis. Then, the reconstruction error of the eliminated
snapshot is used to compute generalization ability as given by (17),

G(m) =
1

N

N∑
i=1

∣∣∣∣si −ΠΨ(Str\si)[:m](si)
∣∣∣∣

||si||
(17)

where Ψ(Str \ si) is the basis created using the snapshot subset Str with
si removed (i.e. Str \ si). The symbols Str, Π and Ψ follow the definition
in (16).

• Specificity : The subspace spanned by the reduced basis is expected to
contain elements similar to that of the training set. This metric measures
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the extent of dissimilarity between randomly picked elements from the
subspace and the snapshots in the training set. To compute specificity, a
set of random shapes in the associated subspace are generated using ran-
dom coefficients R = {Ψαi}Ni=1, where each vector αi is drawn randomly
within a predefined range, and compared to the closest snapshot in the
training set. The mean value of this error is defined as Specificity.

S(m) =
1

Ns

Ns∑
i=1

min
sj∈Str

||sj −Ψ[: m]αi||
||sj ||

(18)

The vectors {αi | αi ∈ Rm}Ns
i=1 are drawn randomly in the range defined

by µα ± σα ⊂ Rm. The vectors µα and σα contain the element-wise
mean and standard deviation of vectors {γk}mk=1, where γk is the reduced
coordinate of the training set snapshot k. (e.g. if Ψ is sourced from SVD
of a centered1 Str, the vectors γk are the columns of matrix Γ := ΨTStr,
and also the standard deviations σα can be computed as σs/

√
N where

σs are the singular values). In the specific case where the basis Ψ is the
Θ, the CPG basis, only non-negative entries are allowed in {αi}. The
symbols Str, Ψ follows the definition in (16).

5 Numerical Examples

5.1 Hertz problem

This section deals with the reduced model of the Hertz contact problem of
two half-cylinders loaded against each other, as shown in Fig. 6a. A loading
parametrization problem is solved, where the imposed displacement d ∈ (0, 0.3)
is the parametric space, with R1 = R2 = 1.0. The contact pressure snapshots
for various imposed displacement values are shown in Fig. 6b.

High-fidelity model: A finite element model of the geometry in Fig. 6a is
created using a quad mesh. Each half-cylinder has 513 nodes and 466 elements
of which 78 elements lie of the potential contact surface i.e. the semi-circular
edges. Linear shape functions are used to discretize the displacement field,
while contact pressure is discretized using piece-wise constant shape functions
centred at the surface nodes of the quad mesh (collocation method, as described
in [14]). For surface integrals, a single-point gauss quadrature centred on the
node is used. This formulation gives mostly smooth contact pressure profiles,
except near the peak pressure.

Reduced Model: Snapshots are generated in the training set, Ptr ∈ P con-
sisting of 12 equidistant points in the parametric space. The full rank and
truncated dual RB (using CPG) is considered, as given in Table 2, whereas the
primal RB is not truncated. The full RB has 12 basis vectors for both primal

1The mean of snapshot matrix is removed from each column
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(a) Hertz problem
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(b) Contact pressure snapshots

Figure 6: Left: Hertz problem: Two half cylinders loaded against each other.
Displacement d, imposed on the top cylinder, is treated as parameter in the
reduced model. Right: Contact pressure snapshots

Primal basis Dual basis

(POD) (CP-greedy)

Full
Tolerance ε ε

Rank 12 12

Truncated
Tolerance ε 5× 10−2

Rank 12 8

Table 2: Truncation tolerances and ranks for each basis for Hertz problem. ε
indicates numerical precision

and dual fields, whereas the truncated dual RB has 8 vectors. Note that dual
RB truncates only 4 out of 12 basis vectors for a high truncation tolerance of
0.05.

The reconstruction errors are shown in Fig. 7 for full and truncated dual
RBs. As expected, the points in the training set show very low reconstruction
error, and the points outside the training set show a relatively high error. When
the dual RB is truncated, points corresponding to truncated dual snapshots have
a high error level, in the same order of error for points outside the training set.
Like the illustrative case in Sec. 3, the non-zero pattern in snapshots in Fig. 8
also show a unique sparsity pattern for each snapshot. Also, the comptactness
shown in Fig. 9 displays a slow decay of the dual orth and dual cone, indicating
a high-rank behaviour of the dual variable. The slightly slower dual cone curve
than the dual orth was expected because of the non-negativity constraint that
appears in approximation using the cone of the dual basis. These observations
again reinforce the proposition that the dual basis does not admit a low-rank
behaviour.

Generalization ability and Specificity metrics introduced in Sec. 4 are plotted
in Fig. 10. The generalization ability for primal field is much better than the
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Figure 7: Primal reconstruction (H1-norm) errors for the Hertz problem. Left:
Full Rank and Right: Full rank primal and truncated dual RB
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Figure 8: Sparsity pattern of dual snapshots for Hertz problem
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Figure 9: Compactness of reduced bases for Hertz problem

19



2 4 6 8 10 12

Rank

10−1

100

101

S
p

ec
ifi

ci
ty

primal orth

dual orth

dual cone

Figure 10: Metrics for Hertz problem. Left: Generalization ability and Right:
Specificity. The bars indicate ±1σ interval of corresponding metrics

dual field, another reflection of separability issues with the dual field. On the
other hand, primal and dual specificity are about the same order, still the primal
specificity is consistently lower.

5.2 Ironing problem

A Type-2 problem where the contact area changes quite significantly, namely
the ironing problem [21], is considered. The ironing problem consists of an iron
block pressed against a flat slab and moved along the length of the slab (Fig. 11).
The problem is simplified with two more assumptions: the first is that iron moves
slowly enough that the problem can be considered to be quasi-static and the
second is that surfaces are frictionless. The horizontal position dx of the iron is
taken as the parameter for the reduced model. In this problem, as the potential
contact surface on the slab is quite larger than the actual position of contact,
the contact pressure snapshots display large changes in contact position, shown
in Fig. 12. The same is reflected in spy pattern of the contact pressure snapshot
matrix, shown in Fig. 13
Details of FE model: A finite element model of the ironing problem is created
using a structured quad mesh for both the iron and the slab. Like the Hertz
problem, the displacement field is approximated using linear shape functions
and contact pressure using piecewise-constant shape functions centred at the
surface nodes. To better demonstrate the inseparability issues, two meshes:
coarse and fine, are considered for iron and slab.

Iron Slab
Coarse Mesh 30× 30 20× 100
Fine Mesh 60× 60 40× 200

The compactness metric, which is equivalent to decay of truncation error
as discussed before, is shown in Fig. 14 for a coarse and fine mesh, created
using 128 snapshots. The contrasting part of the two graphs is the green curve
representing the dual orth compactness, as this curve vanishes at rank 100 for
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Figure 11: Ironing problem: Iron block is pressed against the flat slab by a
displacement dy and moved horizontally. The horizontal displacement of the
iron block dx ∈ [0, L] is treated as the parameter in the reduced model

0.0 0.2 0.4 0.6 0.8 1.0

x/L

0

1

2

3

C
on

ta
ct

P
re

ss
u

re

dx = −1.5

dx = −1.125

dx = −0.75

dx = −0.375

dx = 0.0

dx = 0.375

dx = 0.75

dx = 1.125

dx = 1.5

Figure 12: Sample snapshots of contact pressure for ironing problem
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Figure 13: A typical sparsity pattern of dual snapshots for ironing problem
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the coarse mesh, but not for the fine mesh. This is natural, since coarse mesh has
only 100 nodes on the surface of the slab and thus allowing a maximum rank
of 100, whereas the fine mesh has around 200 nodes. Since the orthogonally
computed dual (dual orth) compactness is also a measure for determining the
true rank of the snapshot matrix, the green curve naturally vanishes at a rank
of 100. However, the most interesting part of this figure is the blue curve
representing the truncation computed using cone-projection. Even for the coarse
mesh, whose true rank is bounded by the number of surface nodes, i.e. 100, the
dual cone compactness doesn’t decay well beyond this rank. This is another
interesting behaviour of the low-rank approach since the dual solution is sought
in a subcone that involves positivity constraints, further degrading compactness.

Apart from compactness, another way to demonstrate the dimensionality of
the dual subcone is by using the projection error of nested training sets, which
will be referred to as nested error subsequently. To compute the nested error,
snapshots are computed in a nested set of points in the parametric space, so
that n-th level training set is a subset of the (n + 1)-th level training set. In
each nested level, 2n+1 points are uniformly distributed in the parametric space
[0, L]. This means, every alternate point in (n+ 1)-th level is the mid-point of
two consecutive points in n-th level. The nested error H(n) can then be defined
as:

H(n) =

∣∣∣∣Sn+1
tr −ΠSn

tr
(Sn+1

tr )
∣∣∣∣
F∣∣∣∣Sn+1

tr

∣∣∣∣
F

(19)

where the symbols Π and Str carry same meaning defined in Sec. 4 and ||·||F
indicates the Frobenius norm. The snapshot matrix for n-th level is indicated by
Sn
tr. The nested error is computed by projecting the (n+ 1)-th level snapshots

on the subspace/subcone spanned by n-th level snapshots. The slope of nested
errors computed using orthogonal and cone projections indicate that the offline
stage will require a very large number of snapshots to explore the dual subcone,
which is another indication of its high-dimensionality, as shown in Fig. 15. The
effects of mesh size are similar to those seen in compactness, as nested error
using dual cone projection does not decay even after training set is full rank in
case of coarse mesh.

Generalization ability and Specificity metrics are plotted in Fig. 16. The
generalization ability shows a similar trend as that of nested error, as they are
similar quantities measuring reconstruction errors outside the training set. The
primal basis outperforms its dual counterparts in this metric, as expected. The
specificity metric is quite higher for dual quantities than the primal ones, which
is because random shapes generated using the RB are quite different.

Conclusions and Perspectives

Conclusions: In this article, the limitations of low-rank ROMs to contact
mechanics problems are discussed. Demonstrations of this approach show mod-
erate reconstruction errors for parametric points outside the training set. To
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Figure 14: Compactness for reduced bases of ironing problem. Left: Coarse
Mesh and Right: Fine Mesh
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Figure 15: Projection error of nested level n+ 1 snapshots on dual RB of level
n. Left: Coarse Mesh and Right: Fine Mesh
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Figure 16: Metrics for ironing problem (for fine mesh). Left: Generalization
ability and Right: Specificity. The fill regions indicate ±1σ interval of corre-
sponding metrics.
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explore the possible sources of this error, we focus on the key assumption of the
low-rank hypothesis i.e. the solution subspace is low-dimensional. It turns out
that the Lagrange Multiplier associated with the inequality constraints, i.e. the
contact pressure, does not admit a low-rank subspace. Qualitative and quantita-
tive assessments are provided to support this argument. The high-dimensional
nature of dual subspace/subcone is demonstrated using various metrics that
show high-dimensionality of contact pressure compared to the relatively low-
dimensionality of the displacement field.

Perspectives: To circumvent the limitations due to the lack of low-rank struc-
ture, several potential approaches need to be explored. One possibility is the
usage of dictionary-based approximation with a relatively large number of snap-
shots spanning the dual subspace efficiently. Another possibility is resorting to
either a non-linear transformation, like the change of variable approach; poten-
tially transforming the dual snapshots in a way that they lie in a low-dimensional
subspace.
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