Determining the geochemical fingerprint of the lead fallout from the Notre-Dame de Paris fire: Lessons for a better discrimination of chemical signatures - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Science of the Total Environment Année : 2023

Determining the geochemical fingerprint of the lead fallout from the Notre-Dame de Paris fire: Lessons for a better discrimination of chemical signatures

Résumé

On 2019, the fire of Notre-Dame de Paris cathedral (“NDdP”) spread an unknown amount of lead (Pb) dust from the roof of the cathedral over Paris. No data describing the geochemical fingerprint of the roof lead, as well as no particle collected during the fire, were available: a post-hoc sampling was performed. To discriminate the potential environmental impact of the fire from multiple Pb sources in Paris, it was mandatory to define unequivocally the fire dust geochemical signature. A dedicated and in hindsight geochemistry-based strategy was developed to eliminate any source of potential contamination due to sampling substrates or previously deposited dust. Radiogenic Pb isotopic signatures ($^{206}$Pb/$^{207}$Pb and $^{208}$Pb/$^{206}$Pb ratios) and elemental ratios were determined in 23 Pb-rich samples collected inside NDdP. We determined that the dust collected on wood substrates on the first floor was most representative of fire emissions. These samples were the analyzed for the 4 Pb isotopes (204, 206, 207, 208) and the fire dust signature is characterized by ratio values of $^{206}$Pb/$^{207}$Pb: 1.1669–1.1685, $^{208}$Pb/$^{206}$Pb: 2.0981–2.1095, $^{208}$Pb/$^{204}$Pb: 38.307–38.342, $^{207}$Pb/$^{204}$Pb: 15.633–15.639 and $^{206}$Pb/$^{204}$Pb: 18.242–18.275. In addition, the fire dust presents typical element-to-Pb ratio. This fingerprint was compared to the signatures of the known local Pb sources. The geochemical fingerprint of the fire is significantly different from that of the dominant urban Pb source. This will allow future evaluation of the contribution of the fire to Paris Pb pollution and of the real extent of the area affected by the Pb-containing dust plume. Moreover, the geographical origin of Pb used for the roof restauration and the spire building was identified. These findings open new ways to study the Pb sources in historical monuments for environmental impacts evaluation, as well as for historical perspectives
Fichier principal
Vignette du fichier
Lead_Notre-Dame_signature_revised_no mark.pdf (1.12 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03917172 , version 1 (16-11-2023)

Identifiants

Citer

Justine Briard, Sophie Ayrault, Matthieu Roy-Barman, Louise Bordier, Maxime L'Héritier, et al.. Determining the geochemical fingerprint of the lead fallout from the Notre-Dame de Paris fire: Lessons for a better discrimination of chemical signatures. Science of the Total Environment, 2023, 864, pp.160676. ⟨10.1016/j.scitotenv.2022.160676⟩. ⟨hal-03917172⟩
93 Consultations
21 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More