Human Motion Likelihood Representation Map-Aided PDR Particle Filter - Archive ouverte HAL
Article Dans Une Revue IEEE Sensors Journal Année : 2022

Human Motion Likelihood Representation Map-Aided PDR Particle Filter

Résumé

Indoor localization systems are seeing increasing demand. Those for pedestrians are receiving a particular focus. Some of these systems leverage Inertial Measurement Unit (IMU) data collected from a device worn by the pedestrian. The IMU data are used to predict and estimate the pedestrian's location. This paper proposes a system based on a Pedestrian Dead Reckoning (PDR) and Particle Filter (PF) with human motion likelihood grid and floor map filtering. We set an evaluation method by creating pedestrian ground truth landmarks and by measuring statistical properties at these landmarks allowing the comparison to similar techniques. The algorithms, implementation, landmarks, and data used for the experiments of this paper are available as free Open Source.
Fichier principal
Vignette du fichier
source_main.pdf (5.9 Mo) Télécharger le fichier
journal_2021_final_hal.zip (8.73 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03916103 , version 1 (18-01-2023)

Identifiants

Citer

Mohamed Anis Ghaoui, Bastien Vincke, Roger Reynaud. Human Motion Likelihood Representation Map-Aided PDR Particle Filter. IEEE Sensors Journal, 2022, 23 (1), pp.484 - 494. ⟨10.1109/jsen.2022.3222639⟩. ⟨hal-03916103⟩
70 Consultations
163 Téléchargements

Altmetric

Partager

More