Upper bound on the number of resonances for even asymptotically hyperbolic manifolds with real-analytic ends - Archive ouverte HAL
Article Dans Une Revue Analysis & PDE Année : 2024

Upper bound on the number of resonances for even asymptotically hyperbolic manifolds with real-analytic ends

Résumé

We prove a polynomial upper bound on the number of resonances in a disc whose radius tends to infinity for even asymptotically hyperbolic manifolds with real-analytic ends. Our analysis also gives a similar upper bound on the number of quasinormal frequencies for Schwarzschild-de Sitter spacetimes.

Dates et versions

hal-03914523 , version 1 (28-12-2022)

Identifiants

Citer

Malo Jézéquel. Upper bound on the number of resonances for even asymptotically hyperbolic manifolds with real-analytic ends. Analysis & PDE, 2024, 17 (10), pp.3623-3670. ⟨10.2140/apde.2024.17.3623⟩. ⟨hal-03914523⟩
11 Consultations
0 Téléchargements

Altmetric

Partager

More