The mixed mock modularity of a new $U$-type function related to the Andrews-Gordon identities - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2023

The mixed mock modularity of a new $U$-type function related to the Andrews-Gordon identities

Résumé

In this paper we resolve a question by Bringmann, Lovejoy, and Rolen on a new vector-valued $U$-type function. We obtain an expression for a corresponding family of Hecke--Appell-type sums in terms of mixed mock modular forms; that is, we express the sum in terms of Appell functions and theta functions. This $U$-type function appears from considering the special polynomials related to generating functions for the partitions occurring in Gordon’s generalization of the Rogers--Ramanujan identities.
Fichier principal
Vignette du fichier
45Article08.pdf (345.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03914253 , version 1 (28-12-2022)

Identifiants

Citer

Nikolay E Borozenets. The mixed mock modularity of a new $U$-type function related to the Andrews-Gordon identities. Hardy-Ramanujan Journal, 2023, Volume 45 - 2022, pp.108 -- 129. ⟨10.46298/hrj.2023.10911⟩. ⟨hal-03914253⟩
44 Consultations
353 Téléchargements

Altmetric

Partager

More