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The mixed mock modularity of a new U-type function

related to the Andrews–Gordon identities

Nikolay E. Borozenets

Abstract. In this paper we resolve a question by Bringmann, Lovejoy, and Rolen on a new vector-valued U -type function. We

obtain an expression for a corresponding family of Hecke–Appell-type sums in terms of mixed mock modular forms; that is, we

express the sum in terms of Appell functions and theta functions. This U -type function appears from considering the special
polynomials related to generating functions for the partitions occurring in Gordon’s generalization of the Rogers–Ramanujan

identities.
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1. Introduction and statement of the main results

Let q be a nonzero complex number with |q| < 1. We recall the q-Pochhammer notation, defined by

(x)n = (x; q)n :=
n−1∏
i=0

(1− xqi), (x)∞ = (x; q)∞ :=
∏
i≥0

(1− xqi).

The well-known Rogers–Ramanujan identities in its analytic form tell us that

∞∑
n=0

qn(n+a)

(q)n
=
∏
j≥0

1

(1− q5j+1+a)(1− q5j+4−a)

for a ∈ {0, 1}. These identities were independently discovered by Rogers, Ramanujan and Schur and
later many beautiful generalizations for them were found. Gordon established generalized partition
theoretic interpretations of the Rogers–Ramanujan identities, for example see [Ol97]. Andrews derived
the analytic form for Gordon’s generalizations [Ad74]. Applying the Jacobi triple product identity,
Andrews’s identities can be written as∑

n1,...,nk≥0

qN
2
1 +···+N2

k+Ni+···+Nk

(q)n1 · · · (q)nk

=
1

(q)∞

∑
j∈Z

(−1)jqj((2k+3)(j+1)−2i)/2 (1.1)

where Nj = nj + · · ·+ nk.
Recall the definition of Gaussian polynomials[n

k

]
q

:=

{
(q)n

(q)k(q)n−k
, 0 ≤ k ≤ n

0, otherwise.

For future statements let us introduce the special polynomials Hn(t,m; b; q) for t ∈ N, 1 ≤ m ≤ t,
b ∈ {0, 1} according to [BLR18]:

Hn(t,m; b; q) :=
∑′

n=nt≥···≥n1≥0

t−1∏
j=1

qn
2
j+(1−b)nj

[
nj+1 − nj − bj +

∑j
r=1(2nr + χm>r)

nj+1 − nj

]
q

.
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Here we use
∑′ to denote the additional restriction nm ≥ 1 if b = 1 and use the usual characteristic

function χA, defined to be 1 if A is true and 0 otherwise. These polynomials are related to generating
functions for the partitions occurring in Gordon’s generalization of the Rogers–Ramanujan identities
[Ol97]. To describe it let Gk,i,i′,L(q) be the generating function for partitions of the form

L−1∑
j=1

jfj

with frequency conditions f1 ≤ i − 1, fL−1 ≤ i′ − 1, fi + fi+1 ≤ k for 1 ≤ k ≤ L − 2. These
conditions are a finitization of the conditions in Gordon generalization [Ol97, Theorem 3]. In this
way the corresponding analytic identity by Andrews (1.1) appears to be a limiting case of some
polynomial identities [Ol97, Theorem 6]. By making some changes of variables and comparing with
[Ol97, Theorem 5], it can be shown that

Hn(t,m; b; q−1) = q(t−1)bn−2(t−1)(n+1
2 )Gt−1,m,t,2n−b+1(q).

In this paper we will study the following function found in a recent paper of Bringmann, Lovejoy,
and Rolen [BLR18, Section 4].

Definition 1.1. For x ∈ Cr {0} and 1 ≤ m ≤ t we define

U (m)
t (x; q) :=

∞∑
n=0

qn(−x)n(−q/x)nHn(t,m; 0; q).

As stated in [BLR18, Section 4], one can use Bailey pair methods to find Hecke–Appell-type series

for U (m)
t (x; q). Hecke–Appell-type series can be thought of as a cross between Hecke-type double-sums

which we define as
fa,b,c(x, y; q) :=

∑
r,s∈Z

sg(r, s)(−1)r+sxrysqa(
r
2)+brs+c(s2), (1.2)

where a, b, c are positive integers with b2 − ac > 0, and Appell functions which we define as

m(x, z; q) :=
1

Θ(z; q)

∞∑
r=−∞

(−1)rq(
r
2)zr

1− qr−1xz
. (1.3)

For theta functions, we write

Θ(x; q) := (x)∞(q/x)∞(q)∞ =
∞∑

n=−∞
(−1)nq(

n
2)xn.

Hecke-type double-sums (1.2) as well as Appell functions (1.3) play a crucial role in studying
modularity. The representation of a function in terms of Appell functions and theta functions gives
the mixed modular properties. The representation in terms of double sums, originally studied by
Hecke and Rogers, is another form which implies a mixed modular behavior; many cases of Hecke-
type double-sums can be converted to Appell function form, see [HiMo14]. By mixed mock modular
forms we mean functions that lie in the tensor space of mock modular forms and modular forms,
that is, functions of the form

∑
figi, where fi are modular forms and gi are mock modular forms

[DMZ12]. In this way a mock modular form is a holomorphic function in the upper half plane
which transforms under modular transformations almost like a modular form but it is not a modular
form. The non-modularity is controlled by a “shadow”, some fixed holomorphic modular form, see
[DMZ12, Zag07, Zwe02].

The Hecke–Appell-type series of Bringmann, Lovejoy, and Rolen that we will study reads
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Theorem 1.2. [BLR18, Section 4, Question 3] We have

U (m)
t (−x; q) =

(x)∞( q
x)∞

(q)2
∞

 ∑
r,s,u≥0

r≡s (mod 2)

+
∑

r,s,u<0
r≡s (mod 2)

 (−1)
r−s
2 xuq

r2

8
+ 4t+3

4
rs+ s2

8
+ 4t+3−2m

4
r+ 1+2m

4
s+ r+s

2
u

=
(x)∞( q

x)∞

(q)2
∞

 ∑
r,s≥0

r≡s (mod 2)

−
∑
r,s<0

r≡s (mod 2)

 (−1)
r−s
2 q

r2

8
+ 4t+3

4
rs+ s2

8
+ 4t+3−2m

4
r+ 1+2m

4
s

1− xq
r+s
2

,

where the second identity holds for |q| < |x| < 1.

The function U (m)
t (x; q) is similar to the function U

(m)
t (x; q) studied by Hikami and Lovejoy

[HiLo15] and Mortenson and Zwegers [MoZw22]:

U
(m)
t (x; q) := q−t

∞∑
n=1

qn(−xq)n−1(−q/x)n−1Hn(t,m; 1; q).

In [HiLo15], one finds that U
(m)
t (−1; q) are vector-valued quantum modular forms which are in

a sense dual to a certain generalization of the Kontsevich–Zagier function. Quantum modular forms
arise when one relaxes certain conditions for a function f(z), which is defined on the upper half of
the complex plane, to be a modular form. For a function f(z) to be modular, one requirement is that
for every γ = ( a b

c d ) ∈ SL2(Z) that the function

g(z) := f(z)− (cz + d)−kf

(
az + b

cz + d

)
= 0.

If instead we only require that g(z) be continuous or analytic, then we have a quantum modular form,
see Zagier’s [Zag10]. An example of a quantum modular form is the Kontsevich–Zagier “strange”
function [Zag01]

F (q) :=
∑
n≥0

(q)n = 1 + (1− q) + (1− q)(1− q2) + (1− q)(1− q2)(1− q3) + . . . .

Note that this function is undefined on any open subset of C but is properly defined at every root of
unity as the sum in F (q) terminates.

Hikami and Lovejoy [HiLo15] also expressed U
(m)
t (x; q) in terms of a family of Hecke–Appell-type

sums analogous to Theorem 1.2, see [HiLo15, Theorem 5.6]. Hikami and Lovejoy also asked what kind
of modular behavior is expressed by the Hecke–Appell-type sum. Motivated by the work [HiLo15],
Bringmann, Lovejoy, and Rolen [BLR18, Section 4] posed the following three questions:

1. What sort of modular behavior is implied by the Hecke–Appell-type sum in Theorem 1.2?

2. Are the functions U (m)
t (−1; q) quantum modular forms?

3. Are the functions U (m)
t (−1; q) related to some sort of Kontsevich–Zagier-type series?

Recently, Mortenson and Zwegers resolved the question of Hikami and Lovejoy and expressed the

family of Hecke–Appell-type sums for U
(m)
t (x; q) [HiLo15, Theorem 5.6] in terms of a family of mixed

mock modular forms [MoZw22, Theorem 1.7]. In this paper, we will use the methods of [MoZw22] to
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answer Bringmann, Lovejoy, and Rolen’s first question about U (m)
t (x; q). Questions 2 and 3 will be

the focus of future research by the author.
To state our results, we first recall some standard notation:

sg(r, s) :=
sg(r) + sg(s)

2
, where sg(r) =

{
1 if r ≥ 0,

−1 if r < 0.

To determine the modularity of U (m)
t (x; q), we will mainly consider the two following functions:

Definition 1.3. We define

gt,m(x) :=
∑

r≡s (mod 2)

sg(r, s)
(−1)

r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4t−1−2m

4
r+ 1+2m

4
s

1− xq
r+s
2

and

ft,m(x) :=
Θ(x; q)

(q)3
∞

gt,m(x).

Remark 1.4. Theorem 1.2 thus gives

U (m)
t (−x; q) = ft+1,m(x),

which has as a special case

U(−x; q) := U (1)
1 (−x; q) = f2,1(x).

Integral to the statement of our main result is the following indefinite binary theta series:

Definition 1.5. Let t ∈ N be fixed. For p,m ∈ Z we define

ϑp,m :=
∑

r≡s (mod 2)

sg(r, s)(−1)
r−s
2 qBp,m(r,s)

and
ϑ∗p,m := qCp,mϑ∗p,m,

where

Bp,m(r, s) :=
r2

8
+

4t− 1

4
rs+

s2

8
+

4p− 1− 2m

4
r +

1 + 2m

4
s

and

Cp,m :=
−2p2 − t(2m+ 1)(2m+ 1− 4p)

8t(2t− 1)
.

Now we are able to formulate the main result of the paper.

Theorem 1.6. For t ≥ 2 and 1 ≤ m < t we have

ft,m(x) =
q−

t
4

(q)3
∞

∑
k mod 2t

(−1)kq
(k+t)2

4t ϑt+k,m+k

∑
r,l∈Z

l≡k (mod 2t)

sg(r, l)(−1)rq
r2

2
+rl+ 2t−1

4t
l2+ 1

2
rx−r.

The proof of Theorem 1.6 is presented in Section 4. The properties of indefinite binary theta
series ϑp,m are developed in Section 2. and the functional equation for ft,m is derived in Section 3.

We will use Theorem 1.6 to derive the modular properties of (q)3
∞ · U

(m)
t (x; q) in Section 6. In

terms of the definition (1.2), we obtain an interpretation of U (m)
t (x; q) in terms of sums of binary

products of Hecke-type sums.
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Corollary 1.7. We have

(q)3
∞ft,m(x)

=

2t−1∑
k=0

(−1)kq(
k
2)+k(f1,4t−1,1(q2t+k−m, q1+m+k; q) + q2t+kf1,4t−1,1(q4t+k−m, q2t+m+k+1; q))

× f1,2t,2t(2t−1)(x
−1qk+1,−q(k+t)(2t−1); q).

One can then use [HiMo14, Theorem 1.3] or [MoZw22, Theorem 1.8, Corollary 4.2] to evaluate the
double-sums in terms of theta functions and Appell functions (1.3).

In Section 5., we use a different method to solve for the functional equation for ft,m(x), and we
obtain another formula.

Theorem 1.8. For t ≥ 2 and 1 ≤ m < t we have

ft,m(x) = x−2t+m+1m(x−2t+1qm,−x2t−1; q2t−1)+

+x−mm(x−2t+1q2t−1−m,−x2t−1; q2t−1)

− x−2t

Θ(−x2t−1; q2t−1)(q)∞

2t−1∑
k=0

xkqkϑt+k,m+k

×
2t−1∑
s=0

(−1)sxsq(
s
2)Θ(q(2t−1)(t−s); q2t(2t−1))Θ(qsx2t; q2t)m(−qkx−2t, qsx2t; q2t).

Theorem 1.8 also gives an interpretation of ft,m(x) in terms of theta functions and Appell functions.
We also consider special case U(x; q) and study its modular properties. In Section 7., we evaluate

U(x; q) in terms of Hecke-type sums:

(q)∞ · U(−x; q) = f1,2,3(x−1q2, q3; q).

In Section 8., we apply Theorem 1.8 to find the Appell form and the “mod theta” congruence
for f1,2,3(x−1q2, q3; q). In Section 9., we find another expression for the mock modularity of
f1,2,3(x−1q2, q3; q) by using identities found in [Mor14].

2. Properties of indefinite binary theta series

In this section we will consider properties of the theta functions ϑp,m and ϑ∗p,m as in Definition 1.5.

Proposition 2.1. We have

(a) ϑp,m = qp+tϑp+2t,m+2t, ϑ
∗
p+2t,m+2t = ϑ∗p,m;

(b) ϑp,m = −qp−m−tϑp,m+2t−1, ϑ∗p,m = −ϑ∗p,m+2t−1;

(c) ϑp,m = −ϑ−p,−m−1, ϑ∗p,m = −ϑ∗−p,−m−1;

(d) ϑp,m = ϑp,2p−m−1, ϑ∗p,m = ϑ∗p,2p−m−1.

We first present a lemma which is helpful in proof of Proposition 2.1.

Lemma 2.2. For a fixed s ∈ Z we have∑
r∈Z

r≡s (mod 2)

(−1)
r−s
2 qBp,m(r,s) = 0.
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For a fixed r ∈ Z we have ∑
s∈Z

s≡r (mod 2)

(−1)
r−s
2 qBp,m(r,s) = 0.

Now we present the proofs of both Lemma 2.2 and Proposition 2.1:

Proof of Lemma 2.2. To obtain the first identity we need to change the variable

r → −r − 2(4t− 1)s− 2(4p− 1− 2m)

and apply the following property of the binary quadratic form Bp,m(r, s):

Bp,m(−r − 2(4t− 1)s− 2(4p− 1− 2m), s) = Bp,m(r, s).

Similarly for the second identity, change

s→ −s− 2(4t− 1)r − 2(1 + 2m)

and use
Bp,m(r,−s− 2(4t− 1)r − 2(1 + 2m)) = Bp,m(r, s).

Proof of Proposition 2.1. First we set the notation:

δm(r) :=

{
1 if r = m,

0 otherwise.

To prove (a) we use the identity

sg(r, s) = sg(r − 1, s− 1) + δ0(r) + δ0(s).

So we have

ϑp,m =
∑

r≡s (mod 2)

sg(r, s)(−1)
r−s
2 qBp,m(r,s)

=
∑

r≡s (mod 2)

sg(r − 1, s− 1)(−1)
r−s
2 qBp,m(r,s)

+
∑

s≡0 (mod 2)

(−1)
−s
2 qBp,m(0,s) +

∑
r≡0 (mod 2)

(−1)
r
2 qBp,m(r,0).

Using Lemma 2.2 and making the change of variables (r, s)→ (r + 1, s+ 1) yields

ϑp,m =
∑

r≡s (mod 2)

sg(r, s)(−1)
r−s
2 qBp,m(r+1,s+1).

Apply the property

Bp,m(r + 1, s+ 1) = Bp,m(r, s) + tr + ts+ t+ p = Bp+2t,m+2t(r, s) + t+ p (2.4)

to obtain (a) for the ϑp,m. To obtain (a) for ϑ∗p,m use the property

Cp+2t,m+2t = Cp,m + t+ p.

Other identities are proved similarly. For (b) use

sg(r, s) = sg(r − 1, s+ 1) + δ0(r)− δ0(s+ 1)
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and properties

Bp,m(r + 1, s− 1) = Bp,m(r, s)− 2t− 1

2
r +

2t− 1

2
s+ p−m− t = Bp,m+2t−1(r, s) + p−m− t,

Cp,m = Cp,m+2t−1 +m− p+ t.

For (c) use
sg(−r,−s) = −sg(r, s) + δ0(r) + δ0(s)

as well as

Bp,m(−r,−s) = B−p,−m−1(r, s),

C−p,−m−1 = Cp,m.

For (d) use
sg(r, s) = sg(s, r)

as well as

Bp,m(r, s) = Bp,2p−m−1(s, r),

Cp,m = Cp,2p−m−1.

3. Functional equation for ft,m(x)

In this section we derive the functional equation for ft,m(x) which is used in the proof of Theorem
1.6 and in the proof of Theorem 1.8.

Proposition 3.1. We have

ft,m(qx) = −x2t−1ft,m(x) + (x2t−m−1 + xm)− Θ(x; q)

(q)3
∞

2t−1∑
k=0

xk−1qkϑt+k,m+k.

Proof of Proposition 3.1. Let us consider∑
r≡s (mod 2)

sg(r, s)(−1)
r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4t−1−2m

4
r+ 1+2m

4
s 1− x2tqt(r+s+2)

1− xq
r+s+2

2

. (3.5)

Let us calculate this sum in two ways. The first way is to open the brackets of the last factor:

gt,m(qx)− x2tq2t
∑

r≡s (mod 2)

sg(r, s)
(−1)

r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4t−1−2m

4
r+ 1+2m

4
s+tr+ts

1− xq
r+s+2

2

= gt,m(qx)− x2tq2t
∑

r≡s (mod 2)

sg(r, s)
(−1)

r−s
2 qBt,m(r,s)+tr+ts

1− xq
r+s+2

2

.

Change the variables (r, s)→ (r − 1, s− 1) and recall property (2.4) from the previous section:

gt,m(qx)− x2t
∑

r≡s (mod 2)

sg(r − 1, s− 1)
(−1)

r−s
2 qBt,m(r,s)

1− xq
r+s
2

= gt,m(qx)− x2t
∑

r≡s (mod 2)

sg(r − 1, s− 1)
(−1)

r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4t−1−2m

4
r+ 1+2m

4
s

1− xq
r+s
2

.
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Because sg(r − 1, s− 1) = sg(r, s)− δ0(r)− δ0(s), we obtain

gt,m(qx)− x2t

gt,m(x)−
∑

s≡0 (mod 2)

(−1)
−s
2 q

s2

8
+ 1+2m

4
s

1− xq
s
2

−
∑

r≡0 (mod 2)

(−1)
r
2 q

r2

8
+ 4t−1−2m

4
r

1− xq
r
2


= gt,m(qx)− x2t

gt,m(x)−
∑
s∈Z

(−1)sq
s2

2
+(m+ 1

2
)s

1− xqs
−
∑
r∈Z

(−1)rq
r2

2
+(2t−1−m+ 1

2
)r

1− xqr

 .

We know the formula ∑
k∈Z

(−1)kq
k2

2
+(n+ 1

2
)k

1− xqk
=

(q)3
∞

xnΘ(x; q)
.

So we find

gt,m(qx)− x2t

(
gt,m(x)− (q)3

∞
xmΘ(x; q)

− (q)3
∞

x2t−m−1Θ(x; q)

)
.

The second way to consider (3.5) is to insert

1− x2tqt(r+s+2)

1− xq
r+s+2

2

=

2t−1∑
k=0

xkq
r+s+2

2
k.

Hence ∑
r≡s (mod 2)

sg(r, s)(−1)
r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4t−1−2m

4
r+ 1+2m

4
s

2t−1∑
k=0

xkq
r+s+2

2
k

=
2t−1∑
k=0

xkqk
∑

r≡s (mod 2)

sg(r, s)(−1)
r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4t−1−2m+2k

4
r+ 1+2m+2k

4
s

=

2t−1∑
k=0

xkqkϑt+k,m+k.

The result is the functional equation for gt,m(x):

2t−1∑
k=0

xkqkϑt+k,m+k = gt,m(qx)− x2t

(
gt,m(x)− x−m (q)3

∞
Θ(x; q)

− x−2t+m+1 (q)3
∞

Θ(x; q)

)
.

To obtain the functional equation for ft,m(x) we need to multiply the above by −Θ(x;q)
x(q)3∞

= Θ(qx;q)
(q)3∞

and
rearrange terms

ft,m(qx) = −x2t−1ft,m(x) + (x2t−m−1 + xm)− Θ(x; q)

(q)3
∞

2t−1∑
k=0

xk−1qkϑt+k,m+k.

Example 3.2. Let us consider the case t = 1 and arbitrary m ∈ Z. Using properties from Proposition
2.1 we can obtain ϑ1,m = 0 and ϑ2,m+1 = 0. Thus, the functional equation for ft,m(x) takes the form:

f1,m(qx) = −xf1,m(x) + x1−m + xm. (3.6)

As f1,m(x) has no poles, we can calculate the solution of this equation by considering the expansion
of f1,m(x) into the following modified Laurent series:

f1,m(x) =
∑
r∈Z

(−1)rq−(r2)−rarx
r. (3.7)
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We substitute the expansion (3.7) into the functional equation (3.6). We can equate the coefficients

of xr on both sides and divide them by (−1)rq−(r2).

ar = ar−1 + (−1)rq(
r
2)δ1−m(r) + (−1)rq(

r
2)δm(r).

Thus, we have

ar =

{
(−1)m+1q(

m
2 ) if r ∈ {1−m,m− 1},

0 otherwise.

We conclude that

ft,m(x) = (−1)m+1q(
m
2 )

m−1∑
r=1−m

(−1)rq−(r2)−rxr.

4. Proof of Theorem 1.6

Now we prove Theorem 1.6 by using the functional equation for ft,m(x). As a main tool we will use
the following useful lemma:

Lemma 4.1. Let (ar)r∈Z be a sequence such that

ar − ar+d = br + Cr,

with |br| < AqB|r| ∀r ∈ Z with some positive A,B ∈ R and Cr = 0 if r /∈ [−d,−1]. Then

ar =
∑
l∈Z

sg(r, l)br+ld.

Proof of Lemma 4.1. Define the following sequence:

âr =
∑
l∈Z

sg(r, l)br+ld.

Then we have

âr − âr+d =
∑
l∈Z

(sg(r, l)− sg(r + d, l − 1))br+ld

=
∑
l∈Z

(δ0(l)− δ0(r + 1)− · · · − δ0(r + d))br+ld

= br − (δ0(r + 1) + · · ·+ δ0(r + d))
∑

n≡r (mod d)

bn.

Note that limr→±∞ ar = 0. This fact can be derived from the recursion identity for ar and the lemma
condition on br. From this property we have∑

n≡r (mod d)

bn =
∑

n≡r (mod d)

an − an+d − Cn = −
∑

n≡r (mod d)

Cn.

Because Cr = 0 if r /∈ [−d,−1] we have

âr − âr+d = br + (δ0(r + 1) + · · ·+ δ0(r + d))
∑

n≡r (mod d)

Cn = br + Cr.

We see that âr satisfied the same recurrence relation as ar. Hence the expression âr−ar is d-periodic.
Also we can notice that limr→∞ âr = 0. From these facts we obtain âr − ar = 0.
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Proof of Theorem 1.6. As ft,m(x) does not have poles, consider the Laurent series in x ∈ Cr {0} for
ft,m(x) in the special form:

ft,m(x) =
∑
r∈Z

(−1)rq
− 1

2(2t−1)
r2+ 1

2
r
arx
−r.

Recall Proposition 3.1 and the definition of the theta function:

ft,m(qx) = −x2t−1ft,m(x) + (x2t−m−1 + xm)− Θ(x; q)

(q)3
∞

2t−1∑
k=0

xk−1qkϑt+k,m+k

= −x2t−1ft,m(x) + (x2t−m−1 + xm)− 1

(q)3
∞

∑
l∈Z

(−1)lq(
l
2)xl

2t−1∑
k=0

xk−1qkϑt+k,m+k.

Making the change of variable l→ l − k + 1 produces

ft,m(qx) = −x2t−1ft,m(x) + (x2t−m−1 + xm)− 1

(q)3
∞

∑
l∈Z

2t−1∑
k=0

(−1)l−k+1q(
l−k+1

2 )+kϑt+k,m+kx
l.

Using the identity (
a− b

2

)
=

(
a

2

)
− ab+

(
b+ 1

2

)
,

we conclude

ft,m(qx) = −x2t−1ft,m(x) + (x2t−m−1 + xm) +
1

(q)3
∞

∑
l∈Z

(−1)lq(
l
2)

2t−1∑
k=0

(−1)kq(
k
2)+k−l(k−1)ϑt+k,m+kx

l.

Considering the coefficient of x−r of both sides yields

ar = ar+2t−1 + br + Cr,

br = q
1

2(2t−1)
r2+ 1

2
r+(r+1

2 ) 1

(q)3
∞

2t−1∑
k=0

(−1)kq(
k
2)+k+r(k−1)ϑt+k,m+k, (4.8)

Cr =

{
(−1)rq

1
2(2t−1)

r2+ 1
2
r
, r ∈ {−m,−2t+m+ 1}

0, r /∈ {−m,−2t+m+ 1}.
(4.9)

From here we can see that we are able to apply Lemma 4.1 with d = 2t− 1 as br and Cr satisfy the
lemma’s conditions. Hence we have

ar =
∑
l∈Z

sg(r, l)br+l(2t−1).

Using the definitions of br, we obtain

ft,m(x) =
∑
r,l∈Z

sg(r, l)(−1)rq
− 1

2(2t−1)
r2+ 1

2
r
x−rbr+l(2t−1)

=
∑
r,l∈Z

sg(r, l)(−1)rq
− 1

2(2t−1)
r2+ 1

2
r × q

1
2(2t−1)

(r+l(2t−1))2+ 1
2

(r+l(2t−1))+(r+l(2t−1)+1
2 )

× 1

(q)3
∞

2t−1∑
k=0

(−1)kq(
k
2)+k+(r+l(2t−1))(k−1)ϑt+k,m+kx

−r.
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Interchanging sums, we find

ft,m(x) =
1

(q)3
∞

2t−1∑
k=0

(−1)kq(
k
2)+kϑt+k,m+k (4.10)

×
∑
r,l∈Z

sg(r, l)(−1)rq(
r
2)+2trl+2t(2t−1)(l

2)+r(k+1)+l((k+t)(2t−1))x−r.

In conclusion, we have

ft,m(x) =
1

(q)3
∞

2t−1∑
k=0

(−1)kq(
k
2)+kϑt+k,m+k

∑
r,l∈Z

sg(r, l)(−1)rq
r2

2
+2trl+2t(2t−1) l2

2
+r(k+ 1

2
)+l(2tk−k)x−r

=
1

(q)3
∞

2t−1∑
k=0

(−1)kq(
k
2)+k− 2t−1

4t
k2ϑt+k,m+k

∑
r,l∈Z

sg(r, l)(−1)rq
r2

2
+r(2tl+k)+ 2t−1

4t
(2tl+k)2+ 1

2
rx−r

=
q−

t
4

(q)3
∞

∑
k mod 2t

(−1)kq
(k+t)2

4t ϑt+k,m+k

∑
r,l∈Z

l≡k (mod 2t)

sg(r, l)(−1)rq
r2

2
+rl+ 2t−1

4t
l2+ 1

2
rx−r.

5. Proof of Theorem 1.8

In this section we again obtain a closed expression for ft,m(x), but we use a different method. Firstly
introduce modified theta functions Vt(x) and Yt(x) and observe some of its properties.

Definition 5.1. Let t ∈ N be fixed. We define

Vt(x) := Θ(−x2t−1; q2t−1) =

∞∑
r=−∞

q(2t−1)(r2)x(2t−1)r

and
Yt(x) := Vt(x)Θ(x; q).

Remark 5.2. Note that Vt(x) and Yt(x) have the following elliptic transformation properties:

Vt(qx) = x−2t+1Vt(x) and Yt(qx) = −x−2tYt(x).

They can be directly obtained from the elliptic transformation property for the theta function

Θ(qnx; q) = (−1)nq−(n2)x−nΘ(x; q). (5.11)

We can derive the following convenient form for the Yt(x).

Proposition 5.3. We have

Yt(x) =

2t−1∑
s=0

(−1)sq(
s
2)Θ(q(2t−1)(t−s); q2t(2t−1))xs

∞∑
n=−∞

q2t(n2)(−qsx2t)n.

Proof of Proposition 5.3. As Yt(x) has no poles in x ∈ C r {0} we can consider its Laurent series
Yt(x) =

∑
r arx

r. Using Remark 5.2 we can obtain the relation on the coefficients:

qrar = −ar+2t.
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We are able to iterate the previous formula and obtain

a2tn+s = (−1)nq2t(n2)+nsas.

Then using this relation we have

Yt(x) =
∞∑

r=−∞
arx

r =
2t−1∑
s=0

∞∑
n=−∞

a2tn+sx
2tn+s

=
2t−1∑
s=0

asx
s
∞∑

n=−∞
(−1)nq2t(n2)+nsx2tn

=

2t−1∑
s=0

asx
s
∞∑

n=−∞
q2t(n2)(−qsx2t)n.

We can also find the coefficients as explicitly. From

Yt(x) = Θ(−x2t−1; q2t−1)Θ(x; q)

we find
∞∑

s=−∞
asx

s =

∞∑
k=−∞

q(2t−1)(k2)x(2t−1)k ×
∞∑

n=−∞
(−1)nq(

n
2)xn.

Hence we can conclude

as =
∞∑

r=−∞
(−1)s−(2t−1)rq(2t−1)(r2)+(s−(2t−1)r

2 )

= (−1)sq(
s
2)

∞∑
r=−∞

(−1)rq(2t−1)(r2)−(2t−1)sr+((2t−1)r+1
2 )

= (−1)sq(
s
2)

∞∑
r=−∞

(−1)rq2t(2t−1)(r2)+(2t−1)(t−s)r = (−1)sq(
s
2)Θ(q(2t−1)(t−s); q2t(2t−1)).

Comparing the two calculations above yields the desired result:

Yt(x) =

2t−1∑
s=0

(−1)sq(
s
2)Θ(q(2t−1)(t−s); q2t(2t−1))xs

∞∑
n=−∞

q2t(n2)(−qsx2t)n.

Proof of Theorem 1.8. Let us consider the function

G(x) = Vt(x)ft,m(x)

and find the functional equation for it using the functional equation for ft,m(x) from Section 3.:

G(qx) = Vt(qx)ft,m(qx)

= x−2t+1Vt(x)

×

(
−x2t−1ft,m(x) + x2t−m−1 + xm − Θ(x; q)

(q)3
∞

2t−1∑
k=0

xk−1qkϑt+k,m+k

)

= −G(x) + x−mVt(x) + x−2t+m+1Vt(x)− x−2tYt(x)

(q)3
∞

2t−1∑
k=0

xkqkϑt+k,m+k.
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By definition of Vt(x) and Proposition 5.3 we have

G(qx) = −G(x) +

∞∑
r=−∞

q(2t−1)(r2)x(2t−1)r−m +
∞∑

r=−∞
q(2t−1)(r2)x(2t−1)r−2t+m+1

− x−2t

(q)3
∞

2t−1∑
k=0

xkqkϑt+k,m+k

2t−1∑
s=0

asx
s
∞∑

r=−∞
(−1)rq2t(r2)(qsx2t)r. (5.12)

Now let us consider the last term in the previous sum. We find

x−2t

(q)3
∞

2t−1∑
k=0

xkqkϑt+k,m+k

2t−1∑
s=0

asx
s
∞∑

r=−∞
q2t(r2)(−qsx2t)r

=
1

(q)3
∞

∞∑
r=−∞

2t−1∑
s=0

2t−1∑
k=0

(−1)rqkϑt+k,m+kasq
2t(r2)qrsx2tr+k+s−2t.

Taking 2tr + s = d, R(d) = b d2tc, S(d) = d− 2tb d2tc we obtain

1

(q)3
∞

∞∑
d=−∞

2t−1∑
k=0

(−1)R(d)qkϑt+k,m+kaS(d)q
2t(R(d)

2 )qR(d)S(d)xd+k−2t.

Change the variable d→ d− k + 2t we have

1

(q)3
∞

∞∑
d=−∞

2t−1∑
k=0

(−1)R(d−k+2t)qkϑt+k,m+kaS(d−k+2t)q
2t(R(d−k+2t)

2 )qR(d−k+2t)S(d−k+2t)xd.

As G(x) has no poles, we are able to take its Laurent series G(x) =
∑
arx

r. Then by formula (5.12)
and the previous expression for the last term we find

qdad = −ad + C
(1)
d + C

(2)
d −Bd

where

C
(1)
d =

{
q(2t−1)(k2) if d = (2t− 1)k −m with k ∈ Z,
0 otherwise,

C
(2)
d =

{
q(2t−1)(k2) if d = (2t− 1)k − 2t+m+ 1 with k ∈ Z,
0 otherwise,

Bd =
1

(q)3
∞

2t−1∑
k=0

(−1)R(d−k+2t)qkϑt+k,m+kaS(d−k+2t)q
2t(R(d−k+2t)

2 )qR(d−k+2t)S(d−k+2t).

Hence by moving −ar to the left, dividing the equation by (1 + qr) and reformulating the last term
we obtain

G(x) =

∞∑
r=−∞

q(2t−1)(r2)x(2t−1)r−m

(1 + q(2t−1)r−m)
+

∞∑
r=−∞

q(2t−1)(r2)x(2t−1)r−2t+m+1

(1 + q(2t−1)r−2t+m+1)
−

− x−2t

(q)3
∞

2t−1∑
k=0

xkqkϑt+k,m+k

2t−1∑
s=0

asx
s
∞∑

r=−∞

(−1)rq2t(r2)(qsx2t)r

(1 + q2tr+k+s−2t)
.
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Recalling the definition of the Appell function (1.3), we can write

G(x) = x−mΘ(−x2t−1; q2t−1)m(x−2t+1q2t−1−m,−x2t−1; q2t−1)

+ x−2t+m+1Θ(−x2t−1; q2t−1)m(x−2t+1qm,−x2t−1; q2t−1)

− x−2t

(q)3
∞

2t−1∑
k=0

xkqkϑt+k,m+k

×
2t−1∑
s=0

(−1)sq(
s
2)Θ(q(2t−1)(t−s); q2t(2t−1))xsΘ(qsx2t; q2t)m(−qkx−2t, qsx2t; q2t).

In conclusion, we divide the equation by Vt(x) and find

ft,m(x) = x−2t+m+1m(x−2t+1qm,−x2t−1; q2t−1) + x−mm(x−2t+1q2t−1−m,−x2t−1; q2t−1)

− x−2t

Θ(−x2t−1; q2t−1)(q)3
∞

2t−1∑
k=0

xkqkϑt+k,m+k

×
2t−1∑
s=0

(−1)sq(
s
2)Θ(q(2t−1)(t−s); q2t(2t−1))xsΘ(qsx2t; q2t)m(−qkx−2t, qsx2t; q2t).

6. Application of Theorem 1.6: interpretation of U (m)
r (x; q) in terms

of Hecke-type double-sums

First, let us interpret the indefinite binary theta series

ϑp,m =
∑

r≡s (mod 2)

sg(r, s)(−1)
r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4p−1−2m

4
r+ 1+2m

4
s

in terms of Hecke-type double-sums (1.2).

Proposition 6.1. We have

ϑp,m = f1,4t−1,1(q2p−m, q1+m; q) + qt+pf1,4t−1,1(q2p+2t−m, q2t+m+1; q).

Proof of Proposition 6.1. Change the variables (r, s) to (2r, 2s), (2r + 1, 2s+ 1):

ϑp,m =

 ∑
r≡s≡0 (mod 2)

+
∑

r≡s≡1 (mod 2)

 sg(r, s)(−1)
r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4p−1−2m

4
r+ 1+2m

4
s.

Let us consider the first sum∑
r≡s≡0 (mod 2)

sg(r, s)(−1)
r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4p−1−2m

4
r+ 1+2m

4
s

=
∑
r,s∈Z

sg(r, s)(−1)r−sq
r2

2
+(4t−1)rs+ s2

2
+ 4p−1−2m

2
r+ 1+2m

2
s

=
∑
r,s∈Z

sg(r, s)(−1)r−sq(
r
2)+(4t−1)rs+(s2)+(2p−m)r+(m+1)s

= f1,4t−1,1(q2p−m, q1+m; q).
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Considering the second sum yields∑
r≡s≡1 (mod 2)

sg(r, s)(−1)
r−s
2 q

r2

8
+ 4t−1

4
rs+ s2

8
+ 4p−1−2m

4
r+ 1+2m

4
s

=
∑
r,s∈Z

sg(r, s)(−1)r−sq
(2r+1)2

8
+ 4t−1

4
(2r+1)(2s+1)+

(2s+1)2

8
+ 4p−1−2m

4
(2r+1)+ 1+2m

4
(2s+1)

=
∑
r,s∈Z

sg(r, s)(−1)r−sq
r2

2
+ r

2
+ 1

8
+(4t−1)rs+ 4t−1

2
r+ 4t−1

2
s+ 4t−1

4
+ s2

2
+ s

2
+ 1

8

· q( 4p−1−2m
2

)r+ 4p−1−2m
4

+( 1+2m
2

)s+ 1+2m
4

= qt+p
∑
r,s∈Z

sg(r, s)(−1)r−sq(
r
2)+(4t−1)rs+(s2)+(2t+2p−m)r+(2t+m+1)s

= qt+pf1,4t−1,1(q2p+2t−m, q2t+m+1; q).

To obtain the final result we sum the two pieces.

Proof of Corollary 1.7. The proof is a straightforward application of Proposition 6.1 and identity
(4.10).

Remind the reader of Remark 1.4:

U (m)
t (−x; q) = ft+1,m(x).

We see that Corollary 1.7 gives us a representation of U (m)
t (x; q) in terms of Hecke-type double-

sums.
We can consider cases of U (m)

2 (x; q), U (m)
3 (x; q). From Definition 1.1 we have

U (1)
2 (x; q) :=

∑
n≥0

(−x)n(− q
x

)nq
n

n∑
k=0

qk
2+k

[
n+ k

n− k

]
q

,

U (2)
2 (x; q) :=

∑
n≥0

(−x)n(− q
x

)nq
n

n∑
k=0

qk
2+k

[
n+ k + 1

n− k

]
q

.

Corollary 1.7 gives us

U (1)
2 (−x; q) =

1

(q)3
∞

5∑
k=0

(−1)kq(
k
2)+k(f1,11,1(q5+k, q2+k; q) + q6+kf1,11,1(q11+k, q8+k; q))

× f1,6,30(x−1qk+1,−q5(k+3); q),

U (2)
2 (−x; q) =

1

(q)3
∞

5∑
k=0

(−1)kq(
k
2)+k(f1,11,1(q4+k, q3+k; q) + q6+kf1,11,1(q10+k, q9+k; q))

× f1,6,30(x−1qk+1,−q5(k+3); q).
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Similarly for U (m)
3 (x; q) we have

U (1)
3 (x; q) :=

∑
n≥0

(−x)n(− q
x

)nq
n

n∑
k=0

k∑
j=0

qk
2+kqj

2+j

[
k + j

k − j

]
q

[
n+ k + 2j

n− k

]
q

,

U (2)
3 (x; q) :=

∑
n≥0

(−x)n(− q
x

)nq
n

n∑
k=0

k∑
j=0

qk
2+kqj

2+j

[
k + j + 1

k − j

]
q

[
n+ k + 2j + 1

n− k

]
q

,

U (3)
3 (x; q) :=

∑
n≥0

(−x)n(− q
x

)nq
n

n∑
k=0

k∑
j=0

qk
2+kqj

2+j

[
k + j + 1

k − j

]
q

[
n+ k + 2j + 2

n− k

]
q

.

Corollary 1.7 gives us

U (1)
3 (−x; q) =

1

(q)3
∞

7∑
k=0

(−1)kq(
k
2)+k(f1,15,1(q7+k, q2+k; q) + q8+kf1,15,1(q15+k, q10+k; q))

× f1,8,56(x−1qk+1,−q7(k+4); q),

U (2)
3 (−x; q) =

1

(q)3
∞

7∑
k=0

(−1)kq(
k
2)+k(f1,15,1(q6+k, q3+k; q) + q8+kf1,15,1(q14+k, q11+k; q))

× f1,8,56(x−1qk+1,−q7(k+4); q),

U (3)
3 (−x; q) =

1

(q)3
∞

7∑
k=0

(−1)kq(
k
2)+k(f1,15,1(q5+k, q4+k; q) + q8+kf1,15,1(q13+k, q12+k; q))

× f1,8,56(x−1qk+1,−q7(k+4); q).

7. Application of Theorem 1.6: interpretation of U(x; q) in terms of
Hecke-type double-sums

We have defined U(x; q) as a special case of vector-valued U (m)
t (x; q) with t = m = 1. Remark 1.4

tells us that
U(−x; q) = f2,1(x).

So let us study the properties of f2,1(x). Firstly, note that by Proposition 2.1 we can derive that
ϑ2,1 = ϑ4,3 = 0, ϑ3,2 = −q−1ϑ1,1, ϑ5,4 = q−3ϑ1,1. Thus by Theorem 1.6:

f2,1(x) =
q−

3
8ϑ1,1

(q)3
∞

 ∑
r,l∈Z

l≡1 (mod 4)

−
∑
r,l∈Z

l≡3 (mod 4)

 sg(r, l)(−1)rq
r2

2
+rl+ 3

8
l2+ 1

2
rx−r

=
ϑ1,1

(q)3
∞

∑
r,l∈Z

sg(r, l)(−1)r+lq
r2

2
+2rl+ 3

2
l2+ 3

2
r+ 3

2
lx−r.

Hence f2,1(x) in terms of Hecke-type double-sums reads

f2,1(x) =
ϑ1,1

(q)3
∞
f1,2,3(x−1q2, q3; q).

Now we want to calculate ϑ1,1. To do it, will use the following interesting identity coming from the
proof of Theorem 1.6:
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Lemma 7.1. For t ≥ 2, 1 ≤ m < t and l ∈ Z we have

2t−1∑
k=0

(−1)kϑ∗t+k,m+k ×
∑
r∈Z

r≡2tl+(2t−1)k (mod 2t(2t−1))

q
1

4t(2t−1)
r2

=


(−1)mq

1
8 (q)3

∞ if l ≡ m (mod 2t− 1),

(−1)m+1q
1
8 (q)3

∞ if l ≡ −m (mod 2t− 1),

0 otherwise.

Proof of Lemma 7.1. By Definitions 4.8 and 4.9, we have

br = q
1

2(2t−1)
r2+ 1

2
r+(r+1

2 ) 1

(q)3
∞

2t−1∑
k=0

(−1)kq(
k
2)+k+r(k−1)ϑt+k,m+k

and

Cr =

{
(−1)rq

1
2(2t−1)

r2+ 1
2
r

if r ∈ {−m,−2t+m+ 1},
0 if r /∈ {−m,−2t+m+ 1}.

Then from the proof of Lemma 4.1, we have∑
n≡r (mod 2t−1)

bn = −
∑

n≡r (mod 2t−1)

Cn

=


(−1)mq

1
2(2t−1)

(m−2t+1)2+ 1
2

(m−2t+1)
if r ≡ m (mod 2t− 1),

(−1)m+1q
1

2(2t−1)
m2− 1

2
m

if r ≡ −m (mod 2t− 1),

0 otherwise,

=


(−1)mq

1
2(2t−1)

m2− 1
2
m

if l ≡ m (mod 2t− 1),

(−1)m+1q
1

2(2t−1)
m2− 1

2
m

if l ≡ −m (mod 2t− 1),

0 otherwise.

We also have∑
n≡l (mod 2t−1)

bn

=
∑
r∈Z

b(2t−1)r+l

=
1

(q)3
∞

∑
r∈Z

q
1

2(2t−1)
((2t−1)r+l)2+ 1

2
((2t−1)r+l)+((2t−1)r+l+1

2 )

×
2t−1∑
k=0

(−1)kq(
k
2)+k+((2t−1)r+l)(k−1)ϑt+k,m+k

=
1

(q)3
∞

2t−1∑
k=0

(−1)kϑt+k,m+k

∑
r∈Z

qt(2t−1)r2+2trl+ t
2t−1

l2+(2t−1)r+l+(k2)+k+(2t−1)rk−(2t−1)r+lk−l

=
1

(q)3
∞

2t−1∑
k=0

(−1)kϑt+k,m+k

∑
r∈Z

qt(2t−1)r2+2trl+ t
2t−1

l2+(k2)+k+(2t−1)rk+lk.

Using the identities

Ct+k,m+k =
1

4t
k2 +

k

2
+
m

2
− m2

2(2t− 1)
+

1

8
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and

1

4t(2t− 1)
(2t(2t− 1)r + 2tl + (2t− 1)k)2

= t(2t− 1)r2 +
t

2t− 1
l2 +

2t− 1

4t
k2 + 2trl + (2t− 1)rk + lk,

we can rewrite the exponent of q in the last term as

t(2t− 1)r2 + 2trl +
t

2t− 1
l2 +

(
k

2

)
+ k + (2t− 1)rk + lk

= Ct+k,m+k +
1

4t(2t− 1)
(2t(2t− 1)r + 2tl + (2t− 1)k)2 − m

2
+

m2

2(2t− 1)
− 1

8
.

Using the fact that ϑ∗p,m = qCp,mϑp,m, we are able to produce

∑
n≡l (mod 2t−1)

bn =
q
−m

2
+ m2

2(2t−1)
− 1

8

(q)3
∞

2t−1∑
k=0

(−1)kϑ∗t+k,m+k

∑
r∈Z

q
1

4t(2t−1)
(2t(2t−1)r+2tl+(2t−1)k)2

.

The above calculation yields

q
−m

2
+ m2

2(2t−1)
− 1

8

(q)3
∞

2t−1∑
k=0

(−1)kϑ∗t+k,m+k

∑
r∈Z

r≡2tl+(2t−1)k (mod 2t(2t−1))

q
1

4t(2t−1)
r2

=


(−1)mq

1
2(2t−1)

m2− 1
2
m

if l ≡ m (mod 2t− 1),

(−1)m+1q
1

2(2t−1)
m2− 1

2
m

if l ≡ −m (mod 2t− 1),

0 otherwise.

Simplifying yields

2t−1∑
k=0

(−1)kϑ∗t+k,m+k

∑
r∈Z

r≡2tl+(2t−1)k (mod 2t(2t−1))

q
1

4t(2t−1)
r2

=


(−1)mq

1
8 (q)3

∞ if l ≡ m (mod 2t− 1),

(−1)m+1q
1
8 (q)3

∞ if l ≡ −m (mod 2t− 1),

0 otherwise.

Note that ϑ∗2,1 = 0, ϑ∗3,2 = −ϑ∗1,1, ϑ∗4,3 = 0, ϑ∗5,4 = ϑ∗1,1. Hence we can apply Lemma 7.1 to calculate
ϑ1,1 taking t = 2, m = 1, l = 1:

ϑ∗1,1 ×

− ∑
r∈Z

r≡7 (mod 12)

+
∑
r∈Z

r≡1 (mod 12)

 q
1
24

r2 = q
1
8 (q)3

∞.

Recall the definition of the η-function:

η(q) :=
∑
r∈Z

χ(r)q
1
24

r2 = q
1
24 (q)∞,
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where χ(r) is an even Dirichlet character modulus 12, such that χ(±1) = 1, χ(±5) = −1. Thus we
have

ϑ∗1,1 = η2,

ϑ1,1 = (q)2
∞.

Finally we obtain

U(−x; q) = f2,1(x) =
1

(q)∞
f1,2,3(x−1q2, q3; q). (7.13)

Remark 7.2. We are also able to obtain identity (7.13) as a corollary of equation [Mor14, (4.17)]:

(q2; q2)∞

∞∑
n=0

q2n+1(−aq; q2)n(−q/a; q2)n = qf3,2,1(q6,−aq3; q2) (7.14)

To see this we take q → q
1
2 and a = −x−1q

1
2 in this equation and apply the Definition 1.1 for

t = m = 1. Identity 7.13 also derived in [Lov12, Section 1, Remark 3] using Bailey pairs method.

8. Application of Theorem 1.8: Evaluations of the double-sum
f1,2,3(x

−1q2, q3; q)

In this section we convert the Hecke-type double-sum f1,2,3(x−1q2, q3; q) to different types of Appell
function forms. The first expression we present does not contain theta terms. For the second
expression, we minimize the number of Appell functions. We begin by introducing more convenient
notation. Define

Θa,m := Θ(qa; qm), Θ̄a,m := Θ(−qa; qm) and Θm := Θm,3m = (qm; qm)∞.

We give the first expression in the following proposition.

Proposition 8.1. We have

f1,2,3(x−1q2, q3; q) = x−1m(x−3q2,−x3; q3)(q)∞ + x−2m(x−3q,−x3; q3)(q)∞

+ x−1 Θ6,12Θ(x4; q4)

Θ(−x3; q3)
[x−2m(−x−4q, x4; q4)−m(−x−4q3, x4; q4)]

− Θ3,12Θ(qx4; q4)

Θ(−x3; q3)
[x−2m(−x−4q, qx4; q4)−m(−x−4q3, qx4; q4)]

− q3x2 Θ−3,12Θ(q3x4; q4)

Θ(−x3; q3)
[x−2m(−x−4q, q3x4; q4)−m(−x−4q3, q3x4; q4)].

Proof of Proposition 8.1. We need to just apply Theorem 1.8 for t = 2, m = 1 and use identities
ϑ2,1 = ϑ4,3 = 0, ϑ3,2 = −q−1ϑ1,1, ϑ5,4 = q−3ϑ1,1, ϑ1,1 = (q)2

∞, Θ0,12 = 0. We obtain

f1,2,3(x−1q2, q3; q) = x−1m(x−3q2,−x3; q3)(q)∞ + x−2m(x−3q,−x3; q3)(q)∞

+
1

Θ(−x3; q3)

3∑
s=0

(−1)sq(
s
2)xsΘ6−3s,12Θ(qsx4; q4)

× (x−3m(−x−4q, qsx4; q4)− x−1m(−x−4q3, qsx4; q4)).

Next we use Proposition 8.1 to understand how f1,2,3(x−1q2, q3; q) looks “mod theta”, that is, we
want to minimize the number of Appell functions in the Appell function form.
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Corollary 8.2. We have

f1,2,3(x−1q2, q3; q) = x−1m(x−3q2,−x3; q3)(q)∞ + x−2m(x−3q,−x3; q3)(q)∞

− x−1Θ(x; q)m(qx−2,−1; q)

− (q2; q2)3
∞Θ1,2Θ(−x; q)Θ(x−3; q3)

Θ̄0,2Θ̄1,2Θ(−x3; q3)Θ(−x−2; q)
.

Remark 8.3. Recall the definition of the universal mock theta function g(x; q):

g(x; q) := x−1

(
−1 +

∞∑
n=0

qn
2

(x)n+1(q/x)n

)
(8.15)

By [[HiMo14], Proposition 4.2] it can be expressed in terms of Appell functions:

g(x; q) = −x−1m(x−3q2, zx3; q3)− x−2m(x−3q, zx3; q3) +
(q)2
∞Θ(xz; q)Θ(z; q3)

Θ(x; q)Θ(z; q)Θ(x3z; q3)
.

We take z = −1 and find

g(x; q) = −x−1m(x−3q2,−x3; q3)− x−2m(x−3q,−x3; q3) +
(q)2
∞Θ(−x; q)Θ(−1; q3)

Θ(x; q)Θ(−1; q)Θ(−x3; q3)
.

Hence Corollary 8.2 tells us that

f1,2,3(x−1q2, q3; q) ∼ −(q)∞ · g(x; q)− x−1Θ(x; q)m(qx−2,−1; q).

where A ∼ B means equivalence of two objects “mod theta”, that is, A−B is a finite sum of quotients
of products of theta functions Θ(x; q) and variables [HiMo14].

Proof of Corollary 8.2. We use an identity from [[Mor13], Corollary 3.10]:

m(x, z; q) = m(−qx2, z′; q4)− q−1xm(−q−1x2, z′; q4)

+
z′(q2; q2)3

∞
Θ(xz; q)Θ(z′; q4)

[Θ(−qx2zz′; q2)Θ(z2(z′)−1; q4)

Θ(−qx2z′; q2)Θ(z; q2)

− Θ(−q2x2zz′; q2)Θ(q2z2(z′)−1; q4)

Θ(−qx2z′; q2)Θ(qz; q2)

]
.

Here we take x→ qx−2, z → −1 and for every term take the corresponding z′ ∈ {x4, qx4, q2x4, q3x4}.
Then we simplify the terms using identities Θ4,2 = Θ6,2 = 0 and Proposition 5.3 for t = 2:

1

Θ(−x3; q3)

3∑
s=0

(−1)sq(
s
2)xsΘ(q3(2−s); q12)Θ(qsx4; q4) = Θ(x; q).

So we find

f1,2,3(x−1q2, q3; q) = x−1m(x−3q2,−x3; q3)(q)∞ + x−2m(x−3q,−x3; q3)(q)∞

− x−1Θ(x; q)m(qx−2,−1; q)

+
(q2; q2)3

∞
Θ(−x3; q3)Θ(−qx−2; q)

[
x3 Θ6,12Θ3,2

Θ̄0,2Θ̄3,2
Θ(x−4; q4)

− q2x2 Θ3,12Θ5,2

Θ̄1,2Θ̄4,2
Θ(qx−4; q4)− q7x4 Θ−3,12Θ7,2

Θ̄1,2Θ̄6,2
Θ(q−1x−4; q4)

]
.
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Then to get the desired result we need to use the elliptic transformation property (5.11) and the
identity

Θ(x; q)Θ(y; qn) =

n∑
k=0

(−1)kq(
k
2)xkΘ((−1)nq(

n
2)+knxny; qn(n+1))Θ(−q1−kx−1y; qn+1)

from [HiMo14, Proposition 2.2, (2.4e)] with n = 3, x→ −x and y = x−3.

9. Another evaluation of the double-sum f1,2,3(x
−1q2, q3; q)

Using [Mor14, Section 4.2] we can derive the Appell function form for f1,2,3(x−1q2, q3; q) with the
same Appell functions part as in Corollary 8.2. Let us take identity [Mor14, (4.15)] and rewrite it in
the following form:

∞∑
n=0

q2n+1(−aq; q2)n(−q/a; q2)n = −qg(−aq; q2)+a
Θ(−aq; q2)

(q2; q2)∞
m(a2,−1; q2)− 1

2
· aΘ(aq; q2)3Θ(a2; q4)

Θ2
4Θ(a4; q4)

where g(x; q) is the universal mock theta function, defined in (8.15). Let us substitute q → q
1
2 and

a = −x−1q
1
2 into the previous equation, so we have

∞∑
n=0

qn(−x; q)n(−q/x; q)n = −g(q/x; q)−x−1 Θ(q/x; q)

(q)∞
m(qx−2,−1; q)+

1

2
·x
−1Θ(−q/x; q)3Θ(qx−2; q2)

(q2; q2)2
∞Θ(q2x−4; q2)

.

Using identity (7.13), Definition 1.1 and properties of g(x; q) and Θ(x; q) we obtain

f1,2,3(x−1q2, q3; q) = −(q)∞ · g(x; q)− x−1Θ(x; q)m(qx−2,−1; q)− 1

2
· x
−5(q)∞Θ(−x; q)3Θ(qx−2; q2)

(q2; q2)2
∞Θ(x−4; q2)

.

This identity gives the same “mod theta” equivalence as stated in Remark 8.3.
If we take identity [Mor14, (4.16)], we obtain a similar representation but it does not consist of

theta terms:
f1,2,3(x−1q2, q3; q) = −(q)∞ · g(x; q)− x−1Θ(x; q)m(qx−2, x; q).
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