A q-analog of Jacobi's two squares formula and its applications - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2023

A q-analog of Jacobi's two squares formula and its applications

Résumé

We consider a $q$-analog $r_2(n, q)$ of the number of representations of an integer as a sum of two squares $r_2(n)$. This $q$-analog is generated by the expansion of a product that was studied by Kronecker and Jordan. We generalize Jacobi's two squares formula from $r_2(n)$ to $r_2(n, q)$. We characterize the signs in the coefficients of $r_2(n, q)$ using the prime factors of $n$. We use $r_2(n, q)$ to characterize the integers which are the length of the hypotenuse of a primitive Pythagorean triangle.
Fichier principal
Vignette du fichier
45Article05.pdf (239.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03914218 , version 1 (28-12-2022)

Identifiants

Citer

José Manuel Rodriguez Caballero. A q-analog of Jacobi's two squares formula and its applications. Hardy-Ramanujan Journal, 2023, Volume 45 - 2022, pp.84 -- 87. ⟨10.46298/hrj.2023.10908⟩. ⟨hal-03914218⟩
14 Consultations
341 Téléchargements

Altmetric

Partager

More