STATISTICAL INFERENCE FOR ROUGH VOLATILITY: CENTRAL LIMIT THEOREMS - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

STATISTICAL INFERENCE FOR ROUGH VOLATILITY: CENTRAL LIMIT THEOREMS

Carsten Chong
  • Fonction : Auteur
  • PersonId : 1209789
Yanghui Liu
  • Fonction : Auteur
  • PersonId : 1209790
Mathieu Rosenbaum
  • Fonction : Auteur
  • PersonId : 946373
Grégoire Szymanski
  • Fonction : Auteur
  • PersonId : 1209791

Résumé

In recent years, there has been substantive empirical evidence that stochastic volatility is rough. In other words, the local behavior of stochastic volatility is much more irregular than semimartingales and resembles that of a fractional Brownian motion with Hurst parameter H < 0.5. In this paper, we derive a consistent and asymptotically mixed normal estimator of H based on high-frequency price observations. In contrast to previous works, we work in a semiparametric setting and do not assume any a priori relationship between volatility estimators and true volatility. Furthermore, our estimator attains a rate of convergence that is known to be optimal in a minimax sense in parametric rough volatility models.
Fichier principal
Vignette du fichier
main_PartII.pdf (467.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03913870 , version 1 (27-12-2022)

Identifiants

  • HAL Id : hal-03913870 , version 1

Citer

Carsten Chong, Marc Hoffmann, Yanghui Liu, Mathieu Rosenbaum, Grégoire Szymanski. STATISTICAL INFERENCE FOR ROUGH VOLATILITY: CENTRAL LIMIT THEOREMS. 2022. ⟨hal-03913870⟩
67 Consultations
58 Téléchargements

Partager

More