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In recent years, there has been substantive empirical evidence that
stochastic volatility is rough. In other words, the local behavior of stochas-
tic volatility is much more irregular than semimartingales and resembles that
of a fractional Brownian motion with Hurst parameter H < 0.5. In this pa-
per, we derive a consistent and asymptotically mixed normal estimator of H
based on high-frequency price observations. In contrast to previous works, we
work in a semiparametric setting and do not assume any a priori relationship
between volatility estimators and true volatility. Furthermore, our estimator
attains a rate of convergence that is known to be optimal in a minimax sense
in parametric rough volatility models.

1. Introduction. For many years, continuous-time stochastic volatility models were pre-
dominantly based on stochastic differential equations driven by Brownian motion or Lévy
processes. But more recently, [21] found empirical evidence that stochastic volatility is ac-
tually much rougher than semimartingales, in the sense that it locally resembles a fractional
Brownian motion with Hurst index H < 0.5, a statement that was further supported by other
empirical work based on both return data [9, 20, 22] and options data [8, 19, 34].

The data-driven approach of [21] to uncover rough volatility starts by considering high-
frequency log-price data {z;s, : ¢ =0,...,[T"/d,]}, where for example J,, = 5min and T =
1year. In a next step, daily realized variance estimates are calculated from the formula

kn
(1.1) RV, = Z(a@_l)knﬂx){ G=1,...,[T/(kn0,)],

i=1
where ;' = w5, — x(;_1)5, and k, = 78 is the number of 5min increments during one
trading day. On a one-year horizon, RV can be viewed as daily spot volatility estimates. In
a next step, realized power variations of log RV, that is,

(T/A]

m(q,A) = T/A] ]2 llog RV;a —log RV(;_1)al?

are computed for different values of ¢ > 0 and A € {1day,2days,...}. If log RV, were
discrete observations of a continuous Ité semimartingale, then one would expect that m(q, A)
scales as A%2, implying that the slope (4 in a regression of logm (g, A) on log A satisfies

1

Cq/qzi.
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However, for large set of high-frequency data, [21] consistently found values of (,/q < %,
indicating that stochastic volatility locally behaves as a fractional Brownian motion with
Hurst parameter H < %

As was pointed out by [9, 20], the above approach rests on the assumption that realized
variances have the same scaling behavior as the true unobserved volatility. At the same time,
it is well known (see e.g., [3, Chapter 8]) that in the absence of jumps and if volatility is a
semimartingale, spot volatility estimators of the type (1.1) converge to true volatility plus a
small modulated white noise. In a first attempt to take estimation errors for spot volatility
into account, [9, 20] assume that

(1.2) log RV = log true volatility ; + €5,

where ¢; is a zero-mean iid sequence that is independent of everything else. Under assump-
tion (1.2), [9, 20] derive consistent estimators of the roughness parameter H in parametric
rough volatility models and uphold the conclusion of [21] that volatility is rough in a large
set of financial time series. We also refer to [10], where the authors assume (1.2) with slightly
different assumptions on (log RV}, ), and to [38], where a central limit theorem (CLT) for
H is established under (1.2) (see also [42]).

This paper aims to substantially generalize the aforementioned results in two directions:
first, we establish consistent and asymptotically mixed normal estimators of H in a semipara-
metric setting, where except for H all other model ingredients are fully nonparametric; and
second, we shall do so without assuming any relationship (such as (1.2)) between volatility
proxies and true volatility. The rate of convergence of our best estimator is

(1.3) 51/ +2),

which as our companion paper [13] shows is optimal in a minimax sense in parametric rough
volatility models. In follow-up work, we will discuss the finite-sample performance of our
estimators and leverage the results of this paper into real data applications. Also, the inclusion
of price jumps [2, 28] and the separation of volatility jumps from volatility roughness [14]
are left to future research.

The remaining paper is structured as follows: in Section 2, after introducing the model
assumptions, we state the main technical result of this paper, Theorem 2.1, a CLT for volatility
of volatility (VoV) estimators in a rough volatility framework. The proof will be given in
Section 3, with certain technical details postponed to Appendices A—C. Section 4 discusses
how we turn Theorem 2.1 into rate-optimal and feasible estimators of H. In addition to a
usual application of the delta method, the rough volatility setting requires us overcome two
distinct challenges:

* eliminating a nonnegligible asymptotic bias term for which we do not have a sufficiently
fast estimator;

* constructing an optimal sequence k,, for spot volatility estimation that depends on the
unknown parameter H without losing a marginal bit of convergence rate.

Our final estimator H,, for H is given in Equation (4.34). As Theorems 4.3 and 4.5 show,
H, is a feasible and rate-optimal estimator of H if H € (0, %) and is equal to % with high
probability if volatility is a continuous Itd semimartingale.

In what follows, we write A < B if there is a constant C' € (0, co) that does not depend on
any important parameter such that A < C'B. Furthermore, if A,,(t) and B,,(t) are stochas-
tic processes, we write A, ~ By, if E[sup;c(o 71|4n(t) — Bn(t)|] — 0 as n — oo. For two
sequences a,, and b, we write a,, ~ by, if a,,/b, — 1 as n — oco. If x € R", we denote its
Euclidean norm by |z|. For any a € R, we write 2¢ = z* if > 0 and 2§ = 0 otherwise. We
also use the notation N={1,2,... } and Ny = {0,1,2,... }.
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2. Model and CLT for VoV estimators. On a filtered probability space (2, F,F =
(Ft)t>0,P) satisfying the usual conditions, we assume that the log-price x of an asset is
given by a continuous Itd6 semimartingale of the form

¢ t
(2.1) Ty = T0 + / bsds + / osdWs, t>0.
0 0

We assume that the squared volatility process ¢ = o satisfies

t t t
22 —co+t / aods + / 3t — s)iteds + / ot — ) (s d W, + od V),
0 0 0

where
t

t t
n§:n§+/ agds+/ g"(t—s)esder/ gt — 5)0sdW,
2.3) 0 0 0

¢ t t
7 = 1Mo + / allds + / Gt — 5)04ds + / gt — 5)0,dW.

0 0 0
The ingredients of (2.1)—(2.3) are assumed to satisfy the following conditions.

ASSUMPTION CLT. Suppose that the log-price process x is given by (2.1) with the fol-
lowing specifications:

1. There is H € (0, %] such that the squared volatility process ¢, = O‘t2 satisfies (2.2) with n
and 1) given by (2.3). The variables x, cy, 778 and 778 are JFoy-measurable.

2. The processes a, b, a" and a" (resp., 0 and ¥) are adapted and locally bounded real-
valued (resp., RY*-dimensional) processes. Moreover; for all T > 0, we assume that

(2.4) lim sup {E[1A|by — bs|] + E[1 A az — as]]} =0.
h=0tc(0,T),|s—t|<h

3. The processes 1], 6 and 9 are adapted, locally bounded and for all T' > 0, there is Kt €
(0,00) such that

(2.5) > ]{E[l Al = sl] + E[LA |6: = 0,]] + E[LA |9, — 05[]} < K|t — s|™.
s,t€(0,T

4. The processes W and W are independent standard F-Brownian motions and W is a four-
dimensional F-Brownian motion that is jointly Gaussian with (W, W). The components
of W may depend on each other and on (W, W)

5. We have

g(t) = gu(t) +go(t), g"(t) =gm,(t) +gf(t), g"(t)=gm,(t) +go(t),

(2.6) A .
30 =970 +d0(t), 7"(t) =gz O+, §0) =g () +F(0),
where
—~1,H-1/2 F(H+ %)
@.7) gn(t) = Kt 2,

0 ST (2H + 1)

and HnaH’f] € (Oa %]’ flaﬁnagﬁ € [H’ %] and 90796]7987@07.63796] € 01([0700)) areﬁmc-
tions vanishing at t = 0.



Let us comment on the conditions imposed in Assumption CLT. Except for the parameter
H, the assumptions on z, ¢, n and 7) are fully nonparametric and designed in such a way that it
contains the rough Heston model [17, 18] as an example, which is a particular important one
as it is founded in the microstructure of financial markets [16, 29]. Note that we allow ¢,  and
7 to have both a usual (differentiable) and a rough (non-differentiable) drift. Moreover, by
considering W, W and W, we allow for the most general dependence between the Brownian
motions driving z, ¢, 7, 7). Also note that H, and Hj; are not coupled with H, so the VoV
processes 1 and 7 can be much rougher than the volatility process c itself.

We should also mention that, because of the various gg-functions in (2.6), the kernels in
(2.2) and (2.3) are only specified around ¢ = 0. In particular, H, H, and H; are parameters
of roughness and are not related to long-range dependence / long-memory / persistence. This
distinction is important as [9, 36, 37] point out.

If ¢ was directly observable, a classical way to feasibly estimate H would be to prove a
joint CLT for realized autocovariances 51725/ [7/5:]=¢ i oty ,c with different values of

f € Ny and then to obtain an estimator of H from the ratio of two such functionals; see [0,
11, 12, 15, 24, 26, 33]. Since we do not observe c, we first consider spot volatility estimators

X [(t+s5)/0n]—1
(28) é?s = k 5 Ct s Ctrfs = Z (571,11")2’ 5?1“ = Lis, — T(i—1)8,»
i=[t/dn]

where k,, € N and k,, ~ 69, " for some x,6 > 0. Then we form realized autocovariances of
these spot volatility estimators by defining

[t/60]— (042)kn+1

.k, —2H 1 ~ ~
, Vi = (b)) 72— Y (ikasks, — Cakas)
(2.9) n i=1

AT AT
x (C(z’+(z+1)k")6mkn6“ - C(z’+4kn)an,kn5n)

for £ > 0. Note that we write [z] and {z} for the integer and fractional part of x, respectively.
The normalization in the last line is chosen in such a way that 17;" bkn converges in prob-
ability. In the semimartingale context (with H = 3 L and ¢ = 0), the functional V" R
used in [40] to estimate the integrated VoV process fo n2 +1?2)ds (see also [23, 32]). Still in
the semimartingale framework, functionals similar to (2.9) have also been investigated in the
literature to estimate the leverage effect; see [1, 4, 5, 30, 39, 41].

To state a CLT for V&k for H < %, we have to introduce some additional notation:
for n € N, h > 0 and a function f: R — R, we define the forward and central difference
operators by

n n
In .
=30 ()i, ap0 =30 () s g om
1= =0

respectively. For n = 1, we simply write Ay, f(t) = Al f(t) = f(t+ h) — f(t) and 6, f(t) =
SLf(t)=f(t+ 1) — f(t—1). Moreover, given a € R, we use the shorthand notation A7
or A} |t|* for A”f( ) where f(t) =1t% or f(t) = |t|* (6;tS and 0}}[t| are used 31m11arly)
Finally, for any d € N, we use =L to denote functional stable convergence in law in the space
of cadlag functions [0, 00) — R? equipped with the local uniform topology. The following
CLT is the main technical result of this paper.



STATISTICAL INFERENCE FOR ROUGH VOLATILITY 5

THEOREM 2.1. Letd € Nand l1,...,0;5 > 2 be integers. Furthermore, consider deter-

ministic integer sequences (k:ﬁll))neN, e (k,gd))neN such that for some k € [2[2{111,%] and

01,...,04 € (0,00) we have l{:,(qj)NHjé,j’*forallj:l,...,d. Foreach j=1,...,d, let

(2.10) zZM = 5;(1—5)/2(‘%"74:’6%“ v A:L,éj,k%j))7
where for £ > 2, we define
t
@1y vi=af [ o2+ s
with
H 5f|e)2H+2

© T 2(2H +1)(2H +2)

(€+ 2)2H+2 o 4(€+ 1)2H+2 + 6€2H+2 - 4(f o 1)2H+2 + (E o 2)2H+2
2(2H +1)(2H +2)

(2.12)

and for a general integer sequence ky,

9K tq k!
n,l,k, — — +{u/d, y\H+1/2
At,é, — H1 (kndn) 1/2 H/ o ZA:f(g_l_ +{k: })++/
H+§ 0 kn .
(2.13) i=0
X/ v dWo (0wl — Ofu/s,16, Mu/s,]5, ) du-
[u/6n]0n

Under Assumption CLT, the process ZI' = (Z" ’1, 2] ’d)T satisfies the joint CLT

(2.14) znh z

where Z = ((Z},... »thd)T)jZ_O is a continuous R%-valued process that is defined on a very

good filtered extension (0, F,F = (Ft)i>0,P) of the original probability space (see e.g. [27,
Chapter 2.1.4]) and conditionally on F is a centered Gaussian process with independent
increments and J -conditional covariance function

3
i 05,0;,,0,0,
(2.15) ¢/ =EZz] | 7= W (H)T,(4).

v=1

In the last line,

t t t
216  Tu(t)— / oSds, Talt) = / (n2 +72)%ds, Ts(t) = / o (2 + 72)ds
0 0 0

and for arbitrary €,0' > 2 and 0,0 € (0,00),

g a0, 160 — 003 2H
£,0,0',0 _ 999 |tV — LU _
N ) = e 1{'£ 2H+1}’
L0 gy = ['(142H)*(1—1/cos(2nH))

217) AT(6 + 4H)(00)2H +2
X 030, [0 — €615 4 (66 + £'6' |11,

ey - B0 COPI o 0P on )
’ 8(H + 3)(H +1)(H + 3)(H +2)(00')2H+2 2H+1J
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If H= i, fyg,e,@ 0 (H) is defined via continuous extension by

o1y A 5458, (100 — 005 1og] 0 — 00| + |00 + £'0/|0log]¢0 + £'0/|]
' 2 5760(66')5/2 '

A few remarks are in order. Theorem 2.1 is a joint functional stable CLT for d realized

autocovariances of the form (2.9) with potentially different lags ¢; and sequences kzﬁf ) that
are of the same asymptotic order ,," but potentially with different constants ¢;. We include
this multivariate CLT not for the sole purpose of pursing utmost generality but really because
we need it in Section 4, when we construct a rate-optimal estimator of H. For technical
reasons, we need £ > 3 in Section 4, which is why we only consider £ > 2 in Theorem 2.1.
(If £=0,1, an additional dominating bias term appears; since we do not use this result, we
refrain from stating it.) The upper bound on « could be relaxed to some extent (we will not
need this), but the lower bound cannot. Since taking the lower bound x = 2?[111 yields the
optimal rate of convergence given in (1.3), one might be tempted to take a shortcut by just
proving Theorem 2.1 for that value of x, but unfortunately, we will need Theorem 2.1 with
a general x in Section 4. An informal argument why (1.3) is the optimal rate is given after
Equation (3.10) below; a formal proof is the subject of our companion paper [13].

For any value of H € (0, %], the functional ‘z"’g’k" converges in probability to the law
of large numbers (LLN) limit Vf given in (2.11), which is given by integrated VoV times
a constant CIJf (given in (2.12)). It is the dependence of this constant on H that allows

us to construct an estimator of H from Vt"’e’k"

cisely, Lemma B.3) shows that A?’Z’k" = 0p(5§3_5)/ 2), SO f/tn’g’k" satisfies a CLT with rate
55(1_”)/2 by (2.14). For the optimal xk = %, this is true if and only if H > i(\/g -1 =
0.3090. For other values of « (in particular, for small H if we take the optimal k), the bias

term A?’EJ% does not converge to 0 fast enough. Even worse, we were not able to find a

k> ﬁ, the proof below (more pre-

debiasing statistic that converges to .A?’Z’k" sufficiently fast. This is why we have to resort
to a nonstandard debiasing procedure in Section 4. The distribution of the limit Z is mixed
normal, with a fully explicit covariance function C;. To make this CLT feasible, we exhibit
consistent estimators of C; in Proposition 4.4.

The next section is devoted to the main ideas in the proof of Theorem 2.1. The reader who
wishes to first understand how this limit theory can be applied to feasible estimation of H
can first jump to Section 4.

3. Proof of Theorem 2.1. The proof of Theorem 2.1 essentially consists of two parts:
an approximation step (see Section 3.1), where we isolate terms that contribute to the limit Z
in (2.14), and a CLT step (see Section 3.2), where we actually prove their stable convergence
in law to Z.

Let us start with a remark about drifts: by the stochastic and ordinary Fubini theorem,

t t ot t pr
/ go(t — $)nsdWs = / / go(r — 8)drnsdWs = / / go(r — s)nsdWdr,
0 0 Js 0 Jo

¢ t ot t pr
/ Jo(t — $)Nsds = / / Go(r — s)drijsds = / / Go(r — s)nsdsdr,
0 0 Js o Jo

and similarly for other integrals, so we can rewrite (2.2) and (2.3) as
t

t
¢ = co+ Ay + / gt —symedW,, 2 =12+ Al + / g1, (t — $)0sd W,
0 0
3.1)

A~ t —
ﬁtz = 770 + A? + / 9H, (t - s)ﬂde&
0
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where 1y = (1, 7), Wy = (W, W3)T and
(3.2)

t s S t
At:/ (as+/ gé(s—r)nderJr/ éé(s—r)ﬁrdr>d8+/ 97 (t = s)7sds,
0 0 0 0
t s _ S - t ~
Al = / <ag+ / (90) (s — )0, dW,. + / (98)’(s—r)0rdr)ds+ / 9, (t = 5)0sds,
0 0 0 o "

R t . s B s _ t -
Al = / (ag + / (90) (s = )9 dW, + / (G0 (s — r)197«d7‘> ds + / 9. (t—s)Vsds.
0 0 0 o "

In the last display, the processes in parentheses are all locally bounded, and so are 7, 6 and

9. Therefore, there is no loss of generality to assume

0 {~mhe@9ﬁHa%»

33 =dn=q" ~1 Ul ~1 7o !
(3 90=00=90=09 =9 =0 i=6=9=0 if H =1,

In addition, as it is usual when infill asymptotics are considered, Assumption CLT can be
localized (cf. [27, Lemma 4.4.9]). Therefore, there is no loss of generality if we assume the

following strengthened hypotheses.

ASSUMPTION CLT’. In addition to Assumption CLT, we have (3.3) and there is a deter-
ministic constant K € (0,00) such that

(3.4) sup {|ae| + |af| + [af| + |be] + 7] + 0] + [Oe] + 16 + |94} < K as.
te[0,00)

In particular, all processes appearing in (2.1), (2.2) and (2.3) have uniformly bounded mo-

ments of all orders. In addition, for all p > 0, there is a constant K, € (0,00) such that

(3.5) lim sup {E[|la; — as[’] + E[|bs — bs[]} =0
h—=0 5 te[0,00):|s—t|<h

and

(3.6) sup {E[|7i — 7s[P)V/? + E[|0; — 0P]P + E[|9, — 95P)V/P} < K|t — 5| .

s,1€[0,00)

3.1. Main decomposition and approximations. Since the arguments can be applied com-
ponent by component, there is no loss of generality to assume d = 1 in this subsection. For

brevity, we also write £ = {1, k,, = kzg), 0 =0W and f/tn’é = ‘N/tn’g’k". In a first step, write

(3.7) Cis, koo, = J1i + J24
where
kn—1 o
1 & (i+5)0n
= (02— [ 7 cas).

’ kn5n ; J (i4§—1)8,

n :1]6"_1/(1“)5" cuds = 2 /(in")é" e — etk ~ Gz,

* ko =0 16, knon, (i-1)5, KO,

and C; = fot csds = fg Ugds is the integrated volatility. The decomposition (3.7) shows that
the spot volatility estimator ¢ . s is first and foremost an estimator of .J';, a local average
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of spot volatility (with J7*, being the estimation error). With this decomposition, we have

(e ) (€ -, )
Clithn)dn kndn €35, kndn Clit (U4 1)kn )80 knbn — Cli4Ckn)5n kb

(3.8)
=21 + 2y + 2+ Z3
where
( 1,i+k, —J ,z)( 1i+l+1)k, 1 Ji+Llk, )7
(JQ itk —J. ,z)( 2,i+(l+1)kn, J2 Ji+Llk, )7
= (ik, = 1) er)b, — S2itn, )
£
Z:Tz = (S2itk, = J2) (T es 1)k, — itk )-
Correspondingly, we obtain the decomposition
(3.9) V= 2 + 25 (1) + 25 () + 2 e),
where
(3.10)
. (o)1 o1 [t/6n]—(€+2)k,+1
s n
Zi(t) = T Z (St = j2,0) T2 et 1)k, — 2,8, )>
1=
_opy [t/6n]—(t+2)kn+1
y (k 5 )1 2H
Zy(t) = % (Jitk, = 1) ik ek, — 2ison, )
n
=1
, (o)1 opg [t/6n]—(4+2)k,+1
m, n
Z3"(t) = . Z (ng—i-k - JQZ»)(J{Z’H(KH),% - Jﬁi-&-ék")a
n —

and 1| 2 means that we can take either 1 or 2 (consistently for the whole line).
We can now give an informal argument why s = % is the optimal window size in

our estimation procedure. Note that (k,d,) " (J5,, r, — J3;) is a normalized second-order

increment of C' over an interval of length k;,d,,. Therefore, Z ’Z(t) is nothing else but the
normalized second-order quadratic variation of C' (computed with a lag £). By definition, C'
is the integral of a fractional process. It is well known from [6, 7] that the normalized higher-
order quadratic variation of a fractional process, computed over a step size of k,,d,,, converges
to a limit at rate (k,5,) /2, for all H € (0,1]. Of course, C is not a fractional process but

rather its integral. Our analysis of Z;' ’e(t) below shows that the rate of convergence remains
unchanged. In other words, if we were able to observe C; directly, we would have chosen
k, = 1, and the optimal rate of convergence would be 6, 1/ 2,

But we do not observe C; directly, which means that we have an estimation error of C} in

the form of J1';. By the integration by parts formula for semimartingales,

o Kntl r(i+5)d,

Jﬁl:ﬁ / ‘ (.’,CS—IL'(H,]',DJH)de
(3.11) " =0 T
2 (i+k7L_1)5n

) kndn Jii-1s, (s = 2(s/5,)5,)ds,
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which shows that J7, is a term of order k,, 1 2, uniformly in i. Moreover, if we neglect the
drift in 2 (which, of course, is fine as we will see below), then J7', is a martingale increment
with step size kydy, so Ji';, — Ji'; will be a martingale increment, too, just with step size

2kpdy,. Because ¢ > 2, if we take the product with Hivesvym, = Miver, Z?’g(t) and
apply integration by parts one more time, we only get martingale increments (with step size
O(ky65,)) but no quadratic variation / drift part. Therefore, the sum over i in Z;' ’e(t) will be
of order Op((knd,) /%) and Z*(t) will be of order Op((kyd,) /2 2H k1), Thus, contrary
to Z%(t), the error term Z7'(¢) is small if &y, is large. Of course, this is expected, for the larger
the window size k,, is, the better integrated volatility is approximated by realized variance.
Nonchalantly ignoring Z3 “ and Zg”’£ for the moment, we obtain the optimal convergence

rate if s is chosen such that (k,d,)"/? and (k,0,)"/?~2Hk" are of the same order. This

precisely gives k = % and the optimal rate of convergence of 6, L/(H+2)

This informal argument clearly does not prove that §,, V/(AH+2) 46 the best possible rate.

But in our companion paper [13], we actually show that this is the case in parametric rough
volatility models. For now, let us make two more remarks before we return to the main line
of the proof. First, in the above argument, we have neglected Z “and Z é"’é, which are mixed
terms and ought to be no worse than 27" *and Zy * in terms of rate. This is indeed true for the
fluctuations, but with the caveat that with the optimal x, Z3 * comes with an asymptotic bias

term (given by (2.13)) that dominates the CLT if (and only if) H < i(\/g — 1)~ 0.3090.

Second, notice that the optimal rate of convergence of @n’é’k

is 5;1/(4H+2), which approaches 5;1/2 as H | 0 and 5;1/4 as H 1 % and is monotone in
between. The fact that the convergence rate is faster for small H compared to the semi-
martingale case H = % (see [40]) seems counter-intuitive since the spot volatility estimator
¢ s should be less precise if ¢ is rough. This is true, and if one decided to first estimate ¢
and then extract H from variations of ¢, the resulting estimator would definitely perform
poorly for small H. But there is no need to estimate c;: recall from the discussion above that
Cis, k.o, 18 mainly an estimator of J3';, = (kn(Sn)_l(C(i_Hkn)(;n — C(i-1)5,)» an increment
of integrated volatility, which as we shall see below contains as much information about H
as an increment of c¢;. So the faster convergence rate of f/tn’e’k" for small H is really due to
the fact that the total error Z]"(t) in pre-estimating Z*(t) is (kn6,)*/22H k1 and hence
smaller for small H for any given window size k.

The following three propositions determine the main parts of ZJ"*(¢), Z5"*(t), Z5*(t) and
Z(t) that contribute to the CLT.

" (after removing the bias)

PROPOSITION 3.1.  Let the assumptions be as in Theorem 2.1. Then for all k € |
and integer sequences ky, ~ 69, " with 0 > 0, the following convergence holds:

2H l]
2H+1> 2

(3.12) (knd) 2200 (1) — M (1)) 5 0,

where using the notations y; = f(f 0sdW and x(t) = —1 for t € [0,%] and x(t) =1 for
t € (3,1], we define

kn(sn)flsz [t/0n]—(£+2)kn+1

n 4
a1y = Hnn

G jb)min
/(‘ 1)6 X5 =1 ) s = Yis/5,05, )Y

=1
3.13 (i—=1+(+2)kn)0n )
G /( (((elou]imthatt

2kn71 )(ys - y[s/én]én)dys'
ik, —1)5,,
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Ifk € (2H+1’ 3], we further have

(3.14) (kndn) ™20 (1) £ 0.

PROPOSITION 3.2.  Under the assumptions of Theorem 2.1, we have for all k € [2121111 , %]

and integer sequences ky, ~ 00, with 0 > 0 that

(k) ~2(Z5(8) = VE = M (1) £ 0,
where
§ k6, )~ 1-2H [t/0n]=(E42)kntl (i 14 (042)k,)60  pr .
e (p) = ) /0 /0 {83,5,Gu((i~ )5, —7)

=1
(3.15) x A} 5 Gu((i+ Chn —1)6, —u) + AF 5 Gr((i+ lky —1)6, — 1)

X Azn6nGH((i - 1)571 - u)}nuqunrdWr

and
Ky my1)2
(3.16) Gu(t) = t
PROPOSITION 3.3.  Under the assumptions of Theorem 2.1, we have for all k € [221111 , %]

and integer sequences ky, ~ 69, " with 0 > 0 that

(knn)~V2(Z54 (1) — A — MY (1) — Mg () == 0,

(knd) ~2(ZE4 (1) — My (1)) £ 0,

n 2(kpd,) 1721 [t/0n]= (42 +1 (- 142k,)5,, .y
M (t) (k:) / X([S/Q;Z;]Li_frl)(ys — Y[s/5,]5.)
" i=1 (i_l)én
X / A} 5. G (i — 1+ Chy)S, — r)nedW,dys,
0
n 2k, ,,)~1—2H /0= EEDRFL (i1 (e42)k )5 .
M5 (t) = (k) Z /O A2 5 Gu((i =14 lhy), —7)
(i—142kn )0, A1 )
x /( 15 X(%)(Zys _y[s/én]6n)dys77rdwr
and
. Ok 8,) 120 /O DRL irea)s,
Mé ,é(t):(k) / X(%)
(i—142k,)d )
X (ys — y[s/a,b]a”)dys/o Aj 5 Ga((i— 1), — 7). dW,.
If v € (525, 1], we also have (ky6,)~/2(Mgy (8) + My (£) + My (1)) == 0.
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We now give an overview of the proof of Proposition 3.2, with details delegated to Sec-
tion A. Note that Z ’E(t) is the only term that contributes to the LLN and, furthermore, is the

only term that contributes to the CLT for any € [212{111’ %]. The other three terms Z' ‘),

Zy £ (t) and Zé"’z(t) never contribute to the LLN and, unless k = %, do not contribute
to the CLT, either. Also, the approximations we need to make for them are mostly similar to
those for Zj ’K(t). This is why we postpone the whole proof of Propositions 3.1 and 3.3 to
Section B.

By (3.1), we have for any ¢ > 0 that

t+kndn t+kndn t+kndn
/ csds = cokn0n + / Agds + / Ag 5 Gt —r)n.dW,.
t ¢ 0

Consequently,

1 (i—14kn)dn 1
(3.18) J2,z’+kn6n - J2,i = m /(il)én (Cstk,5, — Cs)ds = kn5n( 1+ D2,i)7
where
(i—1+2k,,)d,,
Li= / A} 5. Gr((i—1)6, — r)ndW,,
(3.19) 0

(i—1+k,)6.,
Dy, = / (Ayin.s, — As)ds.
(i—1)8,

We can safely remove the drift part D ;:

LEMMA 3.4. Under Assumption CLT’, we have (knén)_l/Q(Zg’Z(t) - Zg’g(t)) =0,
where
[t/0n]—(t+2)k,+1

_ o 1 -
(3.20) ZyH(t) = (knb) 2 Y DY v,
n i=1

Next, an application of the integration by parts formula shows that

3.21) Zy (1) = Myi(£) + Mg () + Qu ' (£) = My () + Q3 (1),
where

. knén _1—-2H [t/0n]—(E+2)kn+1 (i—142k,)0, _
gty = Bne) 3 /0 A25 Gu((i—1)6, — 1)

=1
X / A} 5 Gu((i+ thy, — 1), — u)n,dW,n,dW,,
0

_1—op [t/0n]=(t+2)kn+1

n knon (i=1+(+2)k,)3, ‘
M) = (]1 / A} 5 Gu((i+ hy —1)5, — 1)
" i=1 0
< [ 85, Gul(6 = 16, — AW W,
0
. o) —Lm2t O EEDRAL i1k )5, |
nh () = (,i /0 A7 5 Gu((i—1)0, —7)

=1
x A} 5 Gu((i+ thy — 1)8, — )|, |dr.
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For the proof of Proposition 3.2, we only have to further consider Qg’é(t).
Interchanging summation and integration and factoring k,,6,, out of Ain 5. GH, we obtain

[t/60]— (£42)kn+1

y 1 [(/8n]—tkn)sn 9 i—1-1/3
n Jo i=([r/6n]—2kn+2)V1

x MGy (TR .

(3.22)

Writing /0, = [r/d,] + {r/dn} as the sum of its integer and fractional part and changing
the index ¢ — 1 — [r/dy] to 4 result in

V4 1 ([t/é”]_ek")én [t/én,]—[r/5n]—(€+2)kn , d
oL g
(3.23) n Jo i=(1= 2k v (~[r/62))

X A%GH(7i+Ekn;ﬂ{T/5ﬂ'} )|n?dr.

The next lemma shows that we can replace the lower bound in the summation by 1 — 2k,
and the upper bound by +oo.

LEMMA 3.5.  Under Assumption CLT", we have (kn8,) /2(Q5"(t) — Q3 (1)) = 0,
where
At ([t/0n]—thn)dn 1 ) i r/5) A2 it (5.} )
329 Q' | LS MO () ARGy (P 5y,
" i=1-2k,

Since {r/d,} € [0, 1), the sum over 7 is a Riemann sum that converges as k,, — oo to the
limit [*5 AIGp(v)AZG (v + £)dv. This integral is nothing else but @/ defined in (2.12).

LEMMA 3.6. Forany H € (0,3) and ( > 2,

(3.25) o = / AIGH(v)AIGH (v + 0)dv.
-2

N 1
As an immediate consequence, we obtain Qg’é(t) L, o fg |0, |?dr = V!, the desired
LLN limit. There is only one problem: the convergence rate. Even for a smooth function
(which A%G m(v) is not), a Riemann sum converges to its limit only with rate k,,, which

for small H and small « (including the optimal xk = 21?5_1) is much slower than the needed

(knd,)~ /2. Nevertheless, we shall prove

LEMMA 3.7.  Under Assumption CLT’, we have (k‘nén)_l/z(Qg’e(t) -5 0.

This unexpected gain in convergence rate is only possible because we have a very special
Riemann sum and a very special process i in (3.24). To understand what is so particular
about the former, let us exploit the periodicity of the mapping v — {u} and change variables
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a few times to rewrite

S / " NG (o) MG (0-+ O

i=1-2k,,
(3.26) Z /AIGH ENATG (Y + O)dv
nz 1-2k,,
(o S A2 i fuf5n)
bn 12 2%, ([r/6n])0n

which is valid for any 7 > 0 and n € N. Comparing the last line of the previous display with
(3.24), we realize that there is no need to study how fast the sum over ¢ approaches its limit
since

e st s,
o (1) = Vi=Q™(t) — @, / |Nu|“du 4+ Op(knoy)
0

[e.o]

1 ([t/0n]=thn)0n () i {r/6. 1\ A2 it bk, —{r/8.}
=_— Z ; ATGu(— ) AGu ()

k
" i=1-2k,

R A N S SN PyP I 2

ot [ ARG ATG (5 4 0 )i + Osht).
([r/8n])dn

What matters is therefore how fast the difference in parentheses goes to 0 (as long as we

obtain a bound that is an integrable function of ﬁ). With this in mind, we rewrite the last

line in the previous display as

[t/dn]—tky Jon JOn i—{r/6a} i+-Ckn—{r/5,}
I L T i
j=1 " i=1-2k, 7 U~

- A%GH<H,Z”,{‘“>A%GH<”“’“;W>}du|m|2dr+op<kn5n>.

: . . . 5,
The c?udr—double integral on the right-hand side can be split into an || (jj_l) i) (’;._1) 5, -part and
an | (]fjl) | Tj on -part. By symmetry, the latter is equal to

0n . . |
/ /< s {A%GH(W)A%GH(W)
5=1)6n

- A%GH(L{ZZ(S"} VAIG gy (e AulOnk ;{u/é"} ) } |0 |2dudr,

which implies that
-y,
ORG

[t/6,]—Chy

Z / / {A Gl {r/é /O A2y (P f{r/é )
— —-1)d, J(j—1)6

@327 T =12k
—A%Gﬂi{?@’m%eﬂ(”f’“{”‘”)}(n — 2+ 72 = 72)dudr + Op(kndy).
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In the last line, the regularity of 12 and 7)? starts to play a role. If n? and 72 were just any
H-Hblder regular function, the best bound we can hope for is 57, which is clearly not enough
if H is small. However, this bound can be significantly improved if we have some structure
on 7% and 772. This is therefore the first (and only) place in this paper where the assumption
(2.3) is used. Leveraging (2.3) into a sufficiently good bound in (3.27) is still nontrivial, so
we complete the proof of Lemma 3.7 in Section A.

PROOF OF PROPOSITION 3.2. Proposition 3.2 follows by combining Lemma 3.4, Equa-
tion (3.21), Lemma 3.5 and Lemma 3.7. ]

3.2. Multivariate stable convergence in law. In a first step, we carry out a few approxi-
mations of M™% (), My“F (t), M5 (t), ME55F» (t) and ME™“*" (t). The proof can be

found in Section C.

PROPOSITION 3.8.  Under the conditions of Theorem 2.1, we have

0k, R 0,k Lk S i, 0,k
6;(17H)/2M{17 ) Z C Ik 6;(17n)/2M§’v ) n(t) ~ Z C;ijv s n’
3.28
(3.28) /6.
5n (1- H)/Q( nek ( )+M?':l2,€,kn(t)+M?/)n,€,k ZC ,]ek

where, with the notation {(t) = ((1 — 3|t|) v (|t| — 1))1[_171}@),

, 30n ([8/8n]—(t=2)kn)én
n,5,4,kn —(1—k —1—
¢ =89, (1 )/Q(kn(sn) 1 2H/ | Uzlj—l)dn /([

(3.29) (j=1)n 5/6,]—((+2)k, +1)5,,
gl Onl oy (7 W5 5. VAW (W — Wig5.05, ) AW
and
. J6n
CS’]’Z”“E&;“‘”W/. / N / AZGH( )AIG (v + 152 + )
(3.30) (=1)60 Jr—kn6

+ A3 (0)ATG (v + F5 = O) fdvmg 1y, AW 1)s,dW,;
and Cgb’j’&kn 31 R (33 s with

Jon
1n,5,0,kn —1/2—H ¢—(1—k
31j —2(knby) 1/2 H(Sn(l )/2/ U?jq)(sn

(1—1)6x
(J—-1)d, 1
/ / {A?G
s—k,6:7°J0

(3.31) + NG~ u— 1)}dun(j_1)5ndWT(Ws — Wj—1)5,)dWs,

1,5,4kn —1/2—H s—(1—k)/2 30n 9 (I—1)0n
G = — 2k 8,) V2 H o2

(j—1)5,, " Sr—(e+2)k, 5,

—u—1)

u — 1)du(WS — W[s/dn]dn)dWs'rl(j—l)éndWr-
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Now let us define

nyélykil) n7j7£17k§7,1) n7j7é17k$11) n,j,£17k£11>
t it/6.) [ C1 G C3

(3.32) G = : = E : : :
n,Ed,k;’” Jj=1 n:jzzd’kgﬁ) nvjvfdfks,,d) n’j’édvk#)
t G Gy 3

By (3.29), (3.30) and (3.31), we see that the jth matrix on the right-hand side of (3.32) is
Fjs,-measurable with a zero F(;_1)s, -conditional expectation. In conjunction with the fact
that

Z" ~ (", 1=(1,1,1)7T,

which follows from Propositions 3.1, 3.2, 3.3 and 3.8, we can complete the proof of Theo-
rem 2.1 using a stable CLT for martingale arrays (see [27, Theorem 2.2.15]) upon showing
the following:

1. Forany t >0, m,m’ € {1,...,d} and v,/ € {1,2,3} such that v # 1/, we have

[t/dn]
1 m 1 ’ 771./ IP 9 P ’ ’
(333) Z E[Cg7]7£"'L7k£l )C;lv]agm 7k£1, ) ’ ‘F(]—].)(Sn] —_— ,yfmvemvgm 76'771. (H)I‘V(t)’
j=1
A (m) G s ) P
i ) ) -n,m/
B34 > E[IRTCY | Fii-1s,] — 0.
j=1
2. Forany me {1,...,d}, v € {1,2,3} and ¢t > 0, we have
(A TN P
(3.35) > B Fiyons,] — 0.
j=1

3. If N e {W,W} or N is a bounded martingale on (£2, F,F,P) that is orthogonal in the
martingale sense to both W and W, then

[t/n]
s m IP
(3.36) > B R (Njs, = N-nys,) | Fij—ns,] — 0.
j=1
The proof of these three properties will be given in Section C. This completes the proof of
Theorem 2.1. O

4. Debiasing and rate-optimal inference for H. There are two main challenges in
deriving a rate-optimal estimator of H on the basis of Theorem 2.1: first, if H is small, f/t"’k"’g
has a nonnegligible bias that dominates the CLT fluctuations; and second, the optimal rate
to be achieved is dy,, 1/(4H+2) 21d therefore depends on the unknown roughness parameter H
itself.

In order to account for the asymptotic bias, our strategy is to consider multiple window
sizes k, and combine the resulting f/tn’g’k" ’s in a very specific way that cancels the bias terms
up to a negligible contribution. For M € N, let us introduce the Vandermonde matrix

1 1 ) I 1
1 2! 3-1 M1
272 372 M~

(4.1) Var= |1 :
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which has an inverse Vj\zl by a standard result from linear algebra. Thus, we can define
w(M)
j@(M)|”

so that w(M ) is the normalized last column of V]\f. The following proposition shows that a

4.2) (M) =Vy'enr, enm=(0,...,0,1)T, w(M)=

very specific linear combination of V" Emba for different m’s removes the dominating part

of the bias. While Theorem 2.1 only requires ¢ > 2, we have to impose ¢ > 3 from now on.

PROPOSITION 4.1. Suppose that the conditions of Theorem 2.1 are satisfied with H €
(0, 3] and that ky, ~ 05, for some 6 > 0 and r € [2H+17 %] Furthermore, assume that £ > 3.
Deﬁnmg

(4.3) M=MH)=[3-H+ 5] +1,
we have that
M ~ M
@4 D w(M)m PR YEN (M) = Op((Rndi)'?).
m=1 m=1

Of course, the left-hand side of (4.4) multiplied by (k,d,)'/? satisfies a CLT, but since
we do not need this in the following, we only prove the simpler version (4.4).

PROOF OF PROPOSITION 4.1. By Theorem 2.1, it suffices to show that
M
45) > (M) PHATEE = op((Kndn)V2),
m=1
where A?’K’k" is defined in (2.13). For ¢ > 3, the function v +> A?GH(E —1- é +v) is
smooth on [—3,0],with derivatives (A$G gD —1- ,;—n + v) that are uniformly bounded
inve [—%,O}, i, kypand j=0,..., M. Thus, by (2.13) and Taylor’s theorem,

M-1 kn—1
AMbkn — o 5 \=1/2-H LVARY A3G D (01— iy(—1u/dn})I
j=0 7° " =0

X (yu - y[u/(sn}&”)(gunu — U[U/én]énn[u/& 16, )d'U, + OP(k 1/2—H—- M)

As the reader can verify, by our definition of M in (4.3), we have that k,, 1/2-H=M _

o((kndn)'/?).
Next, we recognize that the sum over 7 is a Riemann sum approximation of the integral
fol A3G )Y (¢ — 1 — v)dv. By the Euler—Maclaurin formula (see e.g., [31, Theorem 1),

there are finite numbers ££ ., such that

(4.6)

kn,—1
(AIGH) (e —1- ) z e+ Ok M.

g, 'n
=0

1

kn
Inserting this back into (4.6), we can ignore the O(k:g M)_term as before. In fact, we only
have to keep those terms for which j + 5/ < M — 1. Thus, letting

M-1 é-@
—nl 1/2—H i’
2y (t) =—26, / Z 1{]+J'_p}
J.J'=0

t
X /0 (—{u/0n})? (Yu = Yju/5,16, ) (Tullu = Tlus5,16, Mu/5.)5, ),
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we have that

M—-1
Ag’é’kn :k;1/2—H Z E ,é )k P + op((kndn )1/2).
p=0

Note that =’ K( t) depends on d,, but not on k,. Therefore, applying the previous identity to
mky, form=1,..., M, we arrive at the following systems of equations:

@4.7) mM/2HH gtk Zm—m"f k2 HP 4 op(kpbn)Y?), m=1,..., M.

Thus, introducing

A?Jf:kn — (11/2+H“4g,&kn’ o 7M1/2+HA;L,€,Mkn)T,
V() = (S0 )k, VA0 EE (kA (M )T

we can rewrite (4.7) as
AP = VIEA () + 0p((kndn)2),

where V) is the Vandermonde matrix (4.1). Thus, by the definition of w(M) (see (4.2)),

M
w(M)mm1/2+H.A?’e’mk" _ w(M)TA?,é,kn

m=1
= [@(M)| " e}y (Vo) VIRE™ (1) + 0p((kndn)'/?)
= [@(M)[T1Z (k2D - 0p( (k) V2).
Since E’X;[Z_l(t) = Op(1), (4.5) follows from our choice of M. O

We now explain how to implement this debiasing procedure in practice. For the remaining
part of this section, we assume that

t
(4.8) / (N2 +72)ds >0 as.
0

(or, equ1valently, all forthcoming statements are valid without (4.8) but in restriction to the
set { [ (2 +7?)ds > 0}). Define

[t/0n]—((+2)kn+1

Sk, o ~n ~n
Vi =0 > (it )bkt — Cib k)

(4.9) P

AN

AT
X (C(i+(€+1)kn)6n,kn&n - C(z‘—l—ﬁkn)&n,kndn)

for £ > 3 and k,, € N, which clearly satisfies th’g’k” = (knb6n)*H f/t”l’k" but in contrast to

f/t”’z’k” is actually a statistic since it does not depend on the unknown H. We construct a first
pilot estimator of H by fixing two lags /1, ¢2 > 3 and then defining

~ V?’l,fl,};‘n
(4.10) H, :@—1<f ™ )
‘/tn7 2,Rn

where ¢ : H — @Z / CI)Z is assumed to be a diffeomorphism and

4.11) ke = 612,
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This choice of /;:n has the advantage that it makes I:In a consistent estimator of H, which
furthermore satisfies a bias-free central limit theorem regardless of the value of H € (0, %)
On the downside, its rate is poor if H is small. In the following, we therefore propose an
iterative approach to improve the rate, which at the same time retains the bias-free property
of the resulting estimators. To this end, let

H={HY =1(\/452 —4j+5-2j+1):j €N}

= {0.3090,0.1514,0.0963, 0.0700, . .. },

(4.12)

which is precisely the set of values of H for which 1 —H— H (as it appears in (4.3)) is an
integer. Therefore, if HU) < H < HU=Y for j € N (where H(© 2) then M = j. Using
the pilot estimator H n, we now define

(4.13) M, = %—ﬁn—kﬁ—f—é}@/‘llogé;l} +1

as an estimator of the number M from (4.3). Since H,, is a consistent estimator of H and
51/410g5 v 0,if H ¢ H, we have

(4.14) lim P(M,, = M) =1.

n—o0

If H € H, then we still have % ~H

is an integer, after rounding, [ — H, + ] W111 typically jump between two consecutive

— 1 — H + 7% in probability, but since the limit

integers as n increases. To avoid that, we have included 5,/ 4 logd,; Lin the definition of Mn,
which is asymptotically bigger than the 571/ *_fluctuations of % — H, + ﬁ and therefore

guarantees that we have P(M,, = M) — 1 for H € H as well.

Having defined Mn, WeE NOw set .F_L(lo)

J . 1/2—-HU-VY) n,ly,mk) _ .
@4.15) HY =™ <Z’.":1 w7V, m) RG) = (5,210 /GO
S 1w(j)mml/Q—Hfﬁ*“th,éz,mkn
m=
forjzl,...,Mn—landlet

= H,, and define consecutively

(4.16) H, =AM,

PROPOSITION 4.2. Suppose that the conditions of Theorem 2.1 are satisfied with H €
(0, 2) and assume (4.8). Further fix two lags (1,05 > 3 such that the function ¢ : H —

1/CI)Z2, where ®H is defined in (2.12), is a diffeomorphism on (0, 2) For any j € Ny, if
H < HY), then

4.17) HY — H = 0p((k5,)"/?).

PROOF. We prove the claim by induction, and since the base case j = 0 corresponds to
the CLT of H,, we can consider 7 > 1 and assume that (4.17) is true for 7 — 1. We rewrite

AU = (Z w(j)m i

Z] w(F)m ml/2=H 1)+2H(mk:( )6 n) 2Hf/tn,éz,mkn
— ! (Z w(J)mm 1/2—H‘j1>+2H‘~/n,£1,mkgg>>
S W()m

1/2—H§j*1)+2H(m%(J’)5 )—2Hf/n,€1,mk£3')>
t

(4.18)
w(j

W(§)mm/2- AV 4 2H T b5 mk?’
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and recall (2.11), (2.13) and that ¢ is a diffeomorphism. Therefore, defining ¢ (z1,z2) =
¢ (z1/x3), we can use the mean-value theorem to find (£}, ftn’Q) satisfying

J
P .
& — > w(i)mm o

m=1
for « =1, 2 such that
d G- 0, mk@)
. _gG-1
H’r(zj) _H= Z 5?175212 Zw ml/2—H{ +2H.A?’ mk§
L:1,2 m=1

(4.19) n,1 #n,2 . . 1/2—HY-D4+2H
+ Z 8@1#(& aét ) Z w(])mm "
m=1

1=1,2
~n,0, ,mk() n,L,,mk() 4,
x (V, - A - Vi)

By Theorem 2.1, V"’Z"’mésg) - .A?’Z“mks‘j) — V¥ = 0p((k$8,)1/2). 1t remains to show
that the first term on the right-hand side of (4.19) is Op((k$’6,)1/2). Let us fix ¢. Since

Ay (£, €% converges in probability, we only have to show that for any ¢ > 3,

NN’ g

J
(4.20) S w2 H gD Op(RD5,)12).,
m=1

By Lemma B.3, A?emkm = Op((K))~1/2-H) = olp(&f(j)/(l”mj))). At the same time,
for any m = 1,...,j, we have that m/2~HY "2 _ pp1/2+H — Op (kY V5,)1/2) =
O (51/(4H(i—1>+2)) 1/2-HG-V+2H by

ml/2HH (4.20), the overall error is op(dy,
(51/(4H(”+2))
n

by the induction hypothesis. So if we replace m

HO J(14+2HD)+1/(4HY - 1)H)) which can be shown

to be op by using the explicit formula for H?) from (4.12). Now once we have

replaced m1/2—HY ™V +2H vy 1/2+H | (4.20) follows from Proposition 4.1 (or, more directly,
from (4.5)). ]

By (4.14) and the previous proposition, [, is our best estimator so far: it is bias-free
and satisfies a CLT with rate 0,/ ‘1" "+2) , where j € N is such that H) < H < HU-1),

Unless H € H, this rate is close but still not equal to the optimal one, which is d;, 5/ (4H+2)

As alluded to before, the remaining obstacle to rate efficiency is the fact that the optlmal

window size k,, should be of order d,, 2H/ (2H+1), which depends on the parameter H to be

estimated. While H,, is not rate-optimal in general, it is nevertheless consistent for H, so one
might be tempted to use &, = [y, 2H./ (2H"+1)] as a new window size and to construct a new
estimator similarly to (4.15) with k,, substituted for k,, and M, substituted for 7. While this
is a natural approach, there is a pitfall inherent in any such plug-in estimator: the sequence
ky is random as it depends on the data through H,,. As Theorem 2.1 was shown with a
deterministic window size, it cannot be applied with %,.

In order tackle this problem, we use the randomization approach of [38] that relies on the
following—seemingly paradoxical—idea: Add more randomness to &, in order to reduce
its randomness! To see what this means and why it works, consider an auxiliary probability
space (', F',P’) equipped with a uniform random variable U. As usual, we form the product
space

O=0xQ, F=FoF, P=PaP
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and extend all random variables on (€2, F,P) to the new space in the canonical fashion. To
simplify the notation, we keep writing P in the following, but whenever U appears, of course,
it stands for P. In addition, we choose two sequences g, ~ q/logd, ! for some ¢ > 0 and

7y — 00 such that &, "/ /rn — 0o and log 8, /r,, — 0. We then define the oracle sequence
“.21) o = [/ G4

where

Tn(Hn“‘Qn) +U] +1

Tn

(4.22) HY = [

n

is a randomized version of H,,. Note that HY depends both on the data (through H,,) and
on U, which is what we mean by “adding randomness.” The success of the randomization
approach pivots on the following oracle property, proved in [38, Lemma 9]:

(4.23) lim Pk, =kY) =1,
where

[rn(H +qn) + U] +1

Tn

n

Note that kU only depends on U but no longer on F, in particular, no longer on the data. This
is what we mean by “reducing randomness.” In conclusion, what the randomization approach
really does it to exchange data-dependent randomness for data-independent randomness in
the sequence k. And this clearly pays off: conditionally on U, the sequence kU is deter-
ministic, to which we can apply all limit theorems obtained so far. Thus, our rate-optimal
estimator of H is

: M, y 1/2— H, {rn.bymks,
(4.25) Hn:@1<zwf:1w(]\?n)mm . )
Zf\n/[’;l w(Mn)mml/Z—H" th,ez,mk"

whose asymptotic behavior is given in the following theorem, our main result.

THEOREM 4.3.  Grant Assumption CLT and suppose that g, ~ q/log 6, * for some q > 0

and 1y, is an increasing sequence such that 6, 14 /rn — o0 and log 6,1 /rp, — 0. Moreover,
fixtwo lags 01,05 > 3 such that the function ¢ : H — @g/@g, where <I>£I is defined in (2.12),

is a diffeomorphism on (0, %) Assuming (4.8) and using the notations
(4.26) B(H) = e24/(2H+1)?
and
w(M,H) = (w(M,H),...,w(M,H)y)T,
(4.27) M 124+ H
2t WM )2

and
(428)  ~C(H) = (/S ) e RN =123, 0023,
we have for any H € (0, 1) that

5 1/(4H+2)(ﬁ H)

(429) st H ( ]_)L—H/ 3
< H) H_12<I>H<I>Z[ w(M, H) et (H)w(M,H)]rV(t))

€/y1
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where M = M (H ) is the number from (4.3) and the limit in the previous line is independent
of F'.

PROOF. By (4.14) and (4.23), it suffices to prove (4.29) for

n,l,,mkY
-1 <er\n/[:1 w(M)mm1/2 "V >
n,lo,mkY
Z%:l w(M)mm!/2= H”’V;:

(4.30) o =

n

instead of H,,. And by the definition of stable convergence in law, it suffices to do so condi-
tionally on U because U does not appear in the limit. Next, similarly to (4.18) and (4.19), we
can write

%) —H L,E ) ]Cn

H/ _ 1 ij\;[f w(M)mm / " QH‘/; 1,

" M — ok
Zm:] U)(M)mml/Q—Hn-‘rQHV; b2, mk]]

and find (¢*',¢"?) such that
6;1/(4H+2) (H;L o H)

M

5 U

:5;1/(4H+2) Z . 1) CfvafQ Z w 1/2—H,,L+2HA?7£L,mkn
1=1,2 m=1

(4.31)

M
+ Z 8%1/’(@”’17@}”’2) Z w(M)mm1/2—Hn+2H
m=1

1=1,2

% 5 1/(4H+2)(Vn£ ;mkY A;L,Zl,,mkg —Vf").

Conditionally on U, the sequence k¥ is deterministic. Furthermore, since g, ~ qlog ¢, ! and

log 0,1 /7, — 0, we have k:g/5772H/(2H+1) — ¢24/(H+1)* By Theorem 2.1, we know that

—_ g U U . . . .
(On 1/(4H+2) (V;n’g“mk” - A?’Z”Wc" - W&))L:Lg,mzl,._,,M satisfies a joint CLT, so a tedious

but entirely straightforward variance computation shows that the second line of the previous
display converges stably to the right-hand side of (4.29). Analogously to how we proved
(4.20), we can first use Proposition 4.2 to replace m!/2~H»+2H 1y y1/2+H and then apply
Proposition 4.1 to show that the first term on the right-hand side of (4.31) is op(dp, »/ (4H+2))
completing the proof. 0

B

In order to make Theorems 2.1 and 4.3 feasible, we need to find consistent estimators of
I'1(t), I'2(t) and I'3(¢) from (2.16). The following estimators are adapted from [3, Theo-
rem 8.12].

PROPOSITION 4.4. Let K, = k[0,%], where k, is defined in (4.21) and X € (0,3).
Moreover, define
"X = Xik,s, — X(ifl)f(nén’
4.32) R

1
m n n
0" = kn 5n(0(1+11< )8 kenbn C(1+(i—1)f<")5n,1;"5")
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and
) | )
P?(t):@ Z (5/nX) (6711X)%,
. Kp6,) 4 £/ (Fed )= -
3 y(p) = Eol) S5 e
i=1
. K,6,)~ 12 /()1 . .
y(p) = Ln0nl e X"
=1

Then under the assumptions of Theorem 4.3, we have f;} £P> ') foreachv =1,2,3.

PROOF. Let 0;"¢ and ff} (t), v =1,2,3, be defined in the same way as the corresponding
quantities in (4.32) and (4.33) except that ky and K,, are replaced by some deterministic se-
quences ky, ~ 05, 27/ and K, ~ 05, 2/ CHTD=2 With 9,0 > 0. Similarly to (4.23),
we have P(K,, = KY) = 1, where KU ~ 05, 2H/CHFD=A o1 some © > 0 (and almost all
realizations of U). Thus, it suffices to show

mmir, M, MmET,,
assuming Assumption CLT’. The first convergence is a consequence of [27, Theorem 8.4.1].
For the remaining two, we make the following observation: by (3.7), we have that
1 (iKn+kn)5n

— ¢s — CiK, s, )ds
knon JiK, s, (e = circn)

m ~ m_, __ 1 n
0 c—0i"c=Jl1 ik, — Sk, T

1 (=1 K +kn),

— C(i— ds.
’ kndn Jii-1)K,5, (¢s = ¢(i-1)K,8,)d5

It is not hard to see from the definition that J]* is of size kj, 1/2 , uniformly in 7. Moreover, the
last two terms on the right-hand side of the previous display are of size (k0. ) , uniformly
in i. Therefore, if we define I'}(¢) and T'3(t) in the same way as T'}(t) and I‘"( ) but with
;¢ replaced by 0/"c, then

E| sup {[F3(6)— T30 + [F5(0) G] DR (Rad) ) -0
te[0,7)

as n — 0o. Consequently, it remains to show 'y é Iy and Iy é I'5. The first convergence
was shown in [6, Theorem 3], while the second is easily obtained from standard techniques
of high-frequency statistics (involving drift removal, localization of ¢, 7 and 7, and a LLN in
the case where X is a Brownian motion and c is a fractional Brownian motion) and the fact
that E[(W{T)2(Wy — W)Y = E[(WH)2(Wy — W) = 3. O

This could have been the end of our construction of a rate-optimal and feasible estimator
of H if it was not for a crucial detail that we have overlooked so far. It turns out that all esti-
mators considered in this section (including H,,) break down if H = %, that is, if volatility is

not rough but just a semimartingale This is because <I>1/ 2 =0 for any £ > 3, which implies

by Theorem 2.1 that (V" ko V" o ko ") for £1,f2 > 3 converges in law to a bivariate mixed
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normal distribution. In particular, the ratio f/;"’[l’k" / f/t"’&’k" and thus the estimator H,, con-
verges in distribution (not in probability) to a random variable with a density. In other words,
naively applying H,, if H = % can output any value in the interval (0, %) just by chance!
There are at least two ways of remedying this problem. One possibility is to choose /> €
{0,1} in (4.10), which ensures that @;52 # 0. However, in this case, Z{”’gz (t) will have a
dominating bias term that has to be removed (even for the LLN; see [3, Section 8.3]). But
more importantly, the latent bias term A?’Z’k" from (2.13) (which will also have a slightly
different form) involves the function v — A$(¢3 — 1 — v), which is no longer smooth in
v € [0, %] This has the consequence that the debiasing procedure from Proposition 4.1 has
to be modified. We propose a different, quicker, solution. Loosely speaking, we first use the

limit theory of an7£2’k" to test whether H = % and only use H, if H= % is rejected. More
precisely, we define

& ook 1 ~n, 0ok
(4.34) Hy = Hl, (V5) + Shag, (V2),
where
3 A 1/2
(4.35) R, = {x eR:|z|>6¥*logs; ! (Z 752’1752’1@)1“3@)) }
v=1

and I'(¢) is defined in (4.33).

THEOREM 4.5. Under the assumptions of Theorem 4.3 and Proposition 4.4, we have
lim P(H,=H,)=1 ifHe(0,3),
n—oo

lim P(H,=1)=1 ifH=1.

n—oo

In particular, if H € (0, %) (4.29) continues to hold with H,, instead ofﬁn.

3/4vrn,ba kn,
Vi

PROOF. If H = %, note that by Theorem 2.1, 6, converges stably in law to a

centered normal with conditional variance 35 _, A (1)I',(t). Thus, by Proposition 4.4,
- 9 27~n 2,4,%2, r d

Vi = 8 VR (T i M (P (1)Y2 =% N(0,1), s0 B(H, = §) = P([Va] <

log ;1) — 1. Similarly, if H € (0, 5), we know from Theorem 2.1 that

25:1 752,1,@2,1 (%)fu(t)) 1/2
(" (H)Ta (1)1

Y, =g§l/2-Hy, ( ~45 N(0,1),

which shows that

3 £2,1,02,1 1\ T 1/2
U7 25 1 FV t
ARSI L) g W

P(H, = H,) =P( |V!| > 6/ 1o 5;1( :
( ) <' | R E ) a(0) 12

APPENDIX A: DETAILS OF THE PROOF OF PROPOSITION 3.2

We start with a lemma on the regularity of the process A from (3.2).

LEMMA A.1. Forany T >0, we have that

E[(Arn — A2 + E[(A],), — AN+ E[(A]

t+h A?)Q]l/Q

S (1+t—H)h(2H+1/2)A1 /\hH,



24

with a constant that is uniform for t € [0,T), h>0and i =0,...,L. If H = %, the previous
bound can be improved to

E[(Apen — Ar)’]? + E[(A]

t+h A?)2]1/2 +E[(4]

Lo — AN <,

PROOF. The statement is obvious for H = 3, so we assume H € (0, 2) in the follow-

ing. We only consider increments of A;; the bounds for A" and A" can be derived in
the same way. Since the first term in the definition of A; is differentiable almost surely
with L2-bounded derivative, we only need to consider the second term. To avoid intro-
ducing additional notation we assume that g = g = 0 such that A; = (g * 77)(t), where

(f*g)( fR f(t—s)g(s)ds denotes the convolution of two integrable functions. Note that

we used the convention ng ) =0 for s < 0. Since

t t+h
E[(Appn — A?JY2 < /0 El(hs — fit_a)2]"2g5(s)ds + / E{(7i )20 (3)ds

< R [(t+ h)FI+1/2 B tH+1/2] < R pH+1/2 < pH
we have shown the second upper bound. To get the first one, observe that
E[(ARA))? =E[(AR (g7 * 1) (1)]"? = E[(Angg * Anfl) (£))%]/?

t+h
< / Mo (s 1) = g5 () Eln-s )M 2ds.

The last integral splits into three parts, according to whether s € (—h,0), s € (t,t + h) or
€ (0,t). Bounding them by

0 . ~
/hgﬁ(s + W)E[ (s — e—s)*]?ds < hH/ g5 (s + h)ds < RHTAT2,

t+h t+h
/t 19 (s +h) = 93 (5) [E[(flern—s)*]?ds S /t 19 (s +h) = g5(s)lds

< hﬁ+1/2 /\tH—3/2h2 < t—HhH-i—ﬁ-i—l/Q’

t t
[ o +-1) = g LG = )25 <0 [ g (s-+1) = g5
< pH+H+1/2
we obtain the assertion of the lemma from [35, Proposition 2]. ]

PROOF OF LEMMA 3.4. We start with H € (0, 3). Consider the first [(k,/d,)'/265] terms
in the sum over i in the definition of ZJ"*(¢) in (3.10). Since E[|csir, s, — cs|2H2 <
(knd,)*, their contribution to Z5 76(15), multiplied by the rate (k,d, )~ '/2, is of order at most
(kn0) Y221 k1 (K, /6,) 1268 (Kpdn)? = 62 and hence asymptotically negligible. Simi-
larly, because
(A1) A2G g (u) Suf =32 A1,

we have that

(i—142k,)0,, 1/2
E[ID} 212 < (ko) /21 ( / (A2Gy (L2 dr)
0

(A2) izl 1/2
< (knbn) '+ < / " <A%GH(u>>2du) < (kndn)
-2
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uniformly in 4, so the first [(k, /d,)/26Z] terms in the sum over i in (3.20) are negligible as
well. Furthermore, by Lemma A.1,

(i—1+kn)dn
E[|D3;[2]/2 < (k) RH /AN / sHis
(i=1)dn

5 (kndn)1+(2H+1/2)/\1 (kn(sn)_H

(A.3)

uniformly for i > [(k,/6,)"/26¢], it follows from the mean-value theorem and the Cauchy—
Schwarz inequality that the difference Zg ’Z(t) — Zg’g(t), with summation restricted to 7 >
[(kn/0,) /262], is of order (kndp) ™' =2H (kndp) ™  (kndp ) TH (kpd, )1~ HHEHA/2AL which
is 0((/{:715”)1/5) for H € (0, %) if € > 0 is small enough.

If H= %, we note that

(i—1+2k,)0.,
1= /( 1)s AzncSnGl/Q((i —1)6p —1)nrdW, = OP((kn(sn)?’/Q)

and Dy, = Op((kn0,)?). Thus, decomposing

[t/0n]—((+2)k,+1

(knén)il/z(zg’z(t) - Z;M(t)) - (kn(sn)i D?,iDg,Hékn

21
Fon i=1
1 [t/6n]—(€+2)kn+1
-2
+ (kndn) . D3 DY iy ok,
" i=1
1 [t/6n]—(£4+2)kn+1
-2
+ (knén) kf Z Dg,iDg,i—l—ékn )
" i=1
we easily notice that the last term is Op(k;,d,,) and therefore negligible. Let us consider the
first expression on the right-hand side; the second one can be treated similarly. Bounding term
by term, we notice that it is of order Op(1). This means two things: to show convergence to
zero, we need to find a better way of bounding this expression. But at the same time, we are
allowed to make any modification that leads to an op(1) error. In particular, thanks to (3.5),

we may replace Dy, , ,,. by (recall that we may assume A; = fg asds)

_ (Z—l-‘y—(é-‘rl)kn)dn S+kn§n

n

2,i+tk, = / / a-1)s,drds,
(i—1+Lky ), s

which has the advantage that it is (;_1)5, -measurable. Therefore, the product DY, Dy, \ ;1.
is F(;_142k,)s, -measurable with zero F(;_1)s, -conditional expectation. By a martingale size
estimate (see [11, Appendix A)), it follows that

(kn/60) " ? (kp6) ? (kp6p)? = kpbyn — 0. O

[t/6n]—(€+2)kn+1

91 ~
(kn 571) ? E Z D?,iDg,z‘—i-an

E [ sup
i=1

t€[0,T]

51

S (kndn) ZE

PROOF OF LEMMA 3.5. We first remove V(—[r/d,]) from the lower bound of i. Since

this is only relevant for r < 2k, 5, and the two A2Gy-terms are uniformly bounded for

i € {1 —2ky,...,0}, this removal only incurs an error of order k,, 1(kn5n)kn = k,,0,,, which
is smaller than the desired convergence rate of (k,d,)"/2.
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It remains to replace the upper bound of the sum by +oc. In order to justify this, observe
that

(A4) ARG (L) < (VTP AL (and S Lgcop, ) if H = 1),

uniformly in n, i and r. If H € (0, 5), we now choose some p > 1+ (1 — x)/(4x(1 — H)).

For any k € [21%11117 2] if p is sufﬁc1ent1y close to the lower bound, we still have k56,, — 0.

So if we consider the two cases t — 1 > kb6, and t — r < kb, separately, we observe in the
former case that

(A.S)
1 [tkRdn 0 ) .

=y DINFSICHE CRIRENCEE IS
n /0 i=[t/80]—[r/6n]—(L+2)k,+1

1 oo i 2H-3 ,t—kP§,
N ko / EHT’TP]dT N kg_QH)(l_p) = 0((kn5n)1/2)
kn =K% /2 kn 0

by our choice of p. If t — r < kb6, we pick some € > 0 to be specified later and, for the
moment, small enough such that we have the bound

Then
([t/8n]—€kn)dn o0 |
I > N3G (=l
"tk i=[t/8n]=[r/6n]—(£+2)kn+1

(A.6)

i+-Chp,—{r/8,} 1 ([t/6n]—Lkn)bn
XAWMZ%J“NnMﬂ #“/ E(ln, [*]dr < k5.

k} —k26,,

The reader can verify that for any H € (0, 1), if p is close enough to 1+ (1 — ) /(4x(1 — H))
and € is small enough, then ks+p6n = o((k: on)1/?).
If H =5, wechoose p € (1, ) By (A.4), the left-hand side of (A.5) is simply zero because

p>1. Simllarly, the summatlon in (A.6) only involves O(k,,) many terms, so the left-hand
side of (A.6) is O(khd,,), which is (k,d,)'/? since p < 3. O

PROOF OF LEMMA 3.6. If H = 1, we have A1Gyj9(v) =0 for v ¢ (—2,0). Thus,

@;/2 =0 forall £ > 2. For H € (0, %), it is possible to compute (IJf using properties of frac-

tional Brownian motion and integration by parts. But in order to prepare for upcoming (and
more involved) calculations, we show how to obtain (3.25) using Fourier methods. An advan-
tage of this approach is that it yields a formula for arbitrary ¢ € R (not just £ € {2,3,...}),
without the need to differentiate between multiple cases. First notice that there is no harm
to extend the integral in (3.25) to —oo, because A2G y(v) = 0 for all v < —2. Therefore, by
Parseval’s formula,

[ sicutaiente+ = [ Fain) e FATGAO as

where F|p fR @(x)e™**¢d¢ denotes the Fourier transform of an L2-function (which
can be extended to the space of tempered distributions) and z denotes the complex conjugate
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of z € C. We need a few definitions and facts regarding Fourier transforms, which can be
found in [25, Section 3.2 and Example 7.1.17]: fora € C\ {0,—-1,-2,...},

2§ = (£2) Uizgs0p,  Fle2)(€) =T(a+1)eFm N2 (¢ g i0)~> 1,
(z £1i0)* =2 + ™2 Fl(z £i0))(§) = 2me™ /T (—a) 1
In particular, still for « € C\ {0,—-1,—-2,...},
Flla|*)(€) =T(a+ 1)(e™HD/2 (e —i0) =1 4 D2 (¢ 4 o)~ 1)
— 2T (a + 1) cos(Z&) ¢~

(A7)

(A.8)

Moreover, by the fact that F[p(- + h)](§) = ‘e’hg]-" [¢](€), the operator A? in the time domain
corresponds to multiplication with e?*¢ — 2% 4 1 in the Fourier domain. Therefore, recalling
(3.16), we have the right-hand side of (3.25) equals

—2 3)2
KH F(H+§) /e—ifge—;m(H—i-g)(g_ZO) H—- 3/2 Lin(H+2 (f—l—’LO) H-3/2
R

2m(H + 1)2
x (€% — 2¢% +1)(e7 ¢ — 2% 4 1)dE.
Observe that
(eQiE —2¢% 4 1)(e — 2% 4 1)= €26 — 46 46— de ¥ 472 = ( — e_%”)ﬁ‘,

which corresponds to 511 in the time domain. Moreover, by (A.7),
({ _ ’L‘O)ia(é + Z-O)fa — g_i—_?oz + eiﬂag:aé-;a + é-;aefifrozéza + §:2a
_§—2a+§ 2a |§‘ 2a

Therefore, using the last formula in (A.7) and with the convention that <5jl acts on the variable
¢, we obtain

i Ky'T(H+3)

(A9)

/ €_i€£(€ _ i0>_H_3/2(§ + io)—H—3/2(€%ix _ e—%ix)éldg
R

2w (H + %)2
D(H+HY’T(—2H-2) , . , i ,
227TK12{ 5411(ez7r(H+1) (E o 10)2H+2 +e in(H+1) (E + ZO)2H+2)
I'(H + %)QP(_ZH_ 2) i H+1 —im(H+1)\ 54 p2H+2 2H+2
_ KT (emHAD) | pmim(HA) gl (2H+2 4 g2H+2)
_ 2cos(m(H + 1))F(H—|— L2r(—2H - 2)(54]6\2H+2.
ZWK%{ !
Using (2.7) and properties of the Gamma function, one can show that the factor in front of
§1012H+2 is equal to 1/(2(2H + 1)(2H + 2)), proving (3.25). O

PRQOF OF LEMMA 3.7. Recall (3.1). In a first step, we show that the contributions of A"
and A" to (3.27) are negligible at a rate of (k,d )1/ 2. We only consider A77 as our arguments

apply to A7 analogously. If j < (k,/d,)'/?, then Z[(k +/0n) 1/2] (3.71)5
size (8, /kn)'/?, the sum over i of the terms in {--- } can be bounded by a multiple of k1te,
where £ > 0 can be as small as we want (cf. (A.6)), and Ay — A7} is of size 5/ by Lemma A.1.
So in total, the contribution of terms with j < (k,/8,)"/? is of size (k,0, )1/ k26, which

n-n

is of
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is o((kn0,)'/?) if ¢ is sufficiently small. If j > (k,/6,)"/?, then u > (k,d,)"/? and there-
fore, by similar arguments, the contribution of the terms with j > (k,/6,)"/? is of size
ke el (K 6,) ~H/26 2 /DM which is o( (k) Y/2) if € is small.

It remains to analyze the expressions Z[t/ On]—Lkn £} an Z[t/ On]—thn ¢ 7, where
n " i—{r/s, il —{r/5,
g = / ] {26000ty (22t
gy e o s,
—AfGH(W)A%GH(W)}/ Ar_ugm, (u— 8)0sdWdudr
" " 0

and éjn is defined in the same way but with ¢ instead of 6. Clearly, it suffices to consider &'

To this end, if H, € (0, %), we consider a sequence of numbers 0 = Ao < A\ <--- < Ag <

AQ+1 = oo, whose values shall be determined at a later stage, and define AD = (61 ’\“] for

all g=0,...,Q + 1. In particular, 1 = )\7(10) < )\g) <K A%Q) < )\%QH) = 0. Accord-

ingly, we can define fy’q by the same formula as in (A.10), except we replace f07 .- dW, by

(q) =
i) (Jjjll ;‘(q +1§5 " dAW;. Then clearly

[t/6n]—Ckn Q [t/0n]—Llk,

2 §=2 2 g"
j=1 =0 j=1

Since u,r € ((§j — 1)dn,jon), we have by the mean-value theorem (for ¢ = 1,...,Q) and a

change of variables (for ¢ = 0) that
(FH1=A)dn
52 / (u — 5)2H1=3ds ifg>1,
(

(GH1=XAD)5, Ar ; (a+1)

JH1I=XT)0n

/ (Ar—ugH,, (u - 8))2d8 S
(+1-AET)s,

r/on
62Hn / (A gp, (55— s))%ds ifq=0.

(A.11) et

< 5721H,, ()\%q))QHrQ,

which, in combination with previous arguments for the contribution of A", shows that
(A.12) E[(ggl»Q)Q]lﬂ < kaél-i-Hn()\(q))H,,—l
uniformly in n and j, with arbitrarily small € > 0. Next, observe that £}’ is Fjs,-measurable

with E[¢} | F, (j+1-20+D)5 | = 0. Therefore, using a martingale size estimate for g =
0,...,Q — 1 and a standard size estimate for ¢ = @) (see [11, Appendix A]), we obtain

[t/6n]—Ckn

(5]

t€[0,T]
(A.13)

_ ()\gﬁ-l /6n)1/2k7515}L+Hn()\%Q))H,,fl ifg<Q—1,
kESE (A Hy -1 if g=Q.

We want this to go to zero faster than (k:nén)l/ 2forall g =0,...,Q. Because we can replace
e by %5 in the last display, it suffices to start with Ay = 0 and then define A1, Ao, ... iteratively
using the relation

— N1+ G —e)k+Hy+(1—Hy)A=0

(A.14)
= A1 =(1—-2e)x +2H,; +2(1 — Hy) A,
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The solution to this recurrence equation is

(1= 20) + 2H,) (2 = 2H,)" — 1)
1—2H, ’

(A.15) Ay =

from which we see that A\, — oo if we keep iterating. Let () be the smallest () such that
Ag, computed from the formula (A.15), is bigger than (15% + ke — H,)) /(1 — H,,), which is
smaller than 1 if € is small. Replacing Ag by a number between this threshold and 1 (if A\g
from (A.15) exceeds 1), we obtain E[sup;c(o 1 (ZEZ?“]_M" &N = o((kndn)'/?) for all

¢=0,...,Q, proving the lemma for H, € (0, %)
If H, = 3, things are much simpler. Indeed, in this case, [ Ar—ugm, (u — 5)0sdW, =
ST 0. AW, 50 (kb)) /2SI e en = Op (6,146, (k) k8200 %) = Oz (01/%).
O]

APPENDIX B: PROOF OF PROPOSITIONS 3.1 AND 3.3

PROOF OF PROPOSITION 3.3. The proposition follows from Lemmas B.1-B.3. O

LEMMA B.1. Recall (3.19) and that y; = fg osdWs. Under Assumption CLT’, we have
(k) V2(Z2(8) — Z2(4)) 2 0 and (k) ~V/2(Z0 (1) — MIE(1)) 25 0 as n — oo,
where

(k) 12H (/8] = (£+2)kp+1

~gL7£ (t) = T . ’iz+£kn
(B.1) 1
(i—142ky, )6,
s/,
. / x(hpr /2'@}—1 )(Ys = Yis/5,15,)4Ys-
(i—1)6n

PROOF. We only consider the approximation of Z3” “(t); the arguments for zZ “(t) are
analogous. Using the equality xy — zoyo = (x — x0)yo + 2(y — yo), we can decompose the
difference Z5"(t) — Z5*(t) = E(t) + E3(t) + E4(t), where

(knd >7172H [t/6n]—(£+2)kn+1

ET(t) = A Z -
(i—=1+42kn)d, .
X/ X(W)/ bydrdys,
(i—1)6n (o/5.16
n 9k ) L2t /O RnL
E3(t)= e -

=1
(i—142k,, )0,
X / ([S/Z(Sk} 721+1 )(IES - x[s/&l}&n)bsdsa
(i—1)6,,
. knén —1-2H [t/0n]—(E+2)kn+1 .
E3 (t) = (k) 2,i+lk,
" i=1

(o1e2k)s o
X /(._1)5 (=) (@s — T(s/5,6, ) ds.
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The first term is the easiest to deal with. The dy,-integral is of order 5n(kn5n)1/ 2 while

DY i\ g, is of order (kn6,)' 1 by (A.2). Hence,
E™(t) = Op(kn0n) 27268, (kn0n) Y2 (kndp) ™ H = o((kndp)'/?)
for any k > 212_1111

Next, consider £ (t) and denote the ds-integral by Y;". Clearly, we have E[(Y;*)?]'/2 <

6,11/ 2(knén)l/ 2 uniformly in n and i. Interchanging summation over i with the integral defin-
ing Dy ; .y, 10 (3.19), we have that

2(ky,6,) " 172H ([t/0n]—kn)on  [8/0n]—lhnt1
B = (k)/ Z V" (Astk,s, — As)ds.
! fonn i=[5/6n]—(£+1)k,+2

The sum ranges over O(k,,) many terms only. Thus, by Lemma A.1,

T
E[ sup |E;}(t)@ < (knbp) VL2 (K 6,) V2 (0, BHAL/ 2N / (1+ s Hds.
te[0,T] 0

,%), one can verify that the last line is

W=

Distinguishing the two cases H < zand H € (
0((kndp)/?) for all k € [2H+1’ 3] and H € (0,
H= % to the end of this proof.

The term EZ(t) is more complicated. Let us first try a power-counting argument as be-

fore: the dys-integral is of order 6. *k,d,, while DY, = Op((knn)' ™), s0 E3(t) =

Op((knén)_Q_QH&l/Zkrnén(k:nén)HH), which as the reader can check, is op((k,0,)"/? if
K> % but unfortunately only Op((k,d,)%/?) if k = 522 7 While this simple approach

). We postpone the analysis of E%(t) if

l\.‘)\»—t

fails for the boundary case xk = %, it shows one important point: when trying to improve
the bound, we are allowed to make any modifications that generate an asymptotically vanish-
ing error (the speed can be arbitrarily slow). For instance, we may replace « by y and, thanks
to (3.5), bs by b(;_1)s, in the definition of EZ(t), so that we only have to analyze

2(k6) 1 2H [t/6,]—(£+2)k,+1

kn

(i—142kp )0, (/6] —i41
b(i-1)s,, / X =) Ws — Yps/s,05,)ds
(B.2) i=1

(i—1)d,
(i—14+(£+2)kn) .
X / A 5. Gr((i+ Chy — 1)8, — 1) (1, dW; + 0 dW).
0

Since ys — Y[s/5,15, = f[‘z /8,160 o,dW,, we can use the stochastic Fubini theorem to rewrite
the ds-integral above as

(1—=142kn)0n  p(r4+60)A(i—142kp )0y |s/8u]—it1

S 1

/(' 1 / x( ok, —1 )(Ys — y[s/én]%)dSU’”dWT'
1—1)d,, r

We do not really need the explicit form of the new ds-integral, so let us denote it by v, and

only remark that E[sup,c[o 7 [ PP < 532 for all p > 0. Using integration by parts, we
can now write (B.2) as 3, (t) + E3,(t) + E35(t), where

[t/0n]—(€+2)kn+1

o 2 (i—1+2k,)6.,
B (1) = () 15 b, /( s

i=1 1)dn

X / A2 5 Grl(i+ lhn — 1)8, — u)(nudWy + H,dW,)dW,,
0
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o /6] =(E2)hnt1

Egy(t) = (kndu) 202 37 by,

i=1

(= 14+(042)k )5
x / A2 5 Gr((i+ thy — 1)6, — 1)
(i—1)6n

X / Yo dWy (0, dW, 4 1. dW,.),
(i—1)68,

[t/6,]—(042)k,+1

. Com 2
By(t) = (badn) 7202 0 by,
" i=1

(i—1+42k,)d,

x/ Ak 5 Gr((i+ lky — 1)0, — 7)) opnypdr.
(i_l)(sn

Since

(i—142k0)5, ¢
(B.3) A2 5 Gar((i+ Chy — 16 —1)|dr = (kb)) 152 / A2G  (r)dr,
(i—1)8, 2

we have that E7(t) = Op((kn6y)~2"2H (kpdn) H+3/265/%) = 0p((knd,)Y/2) for all k >
2?}11 For both Egl(t) and E3,(t), note that the ith term is JF(;_i4(s42)k,)s5, -Measurable
with zero F(;_1)s, -conditional expectation. Moreover, using (A.2), we have that each sum-
mand is of order (k,,8,) T (k,d,) 253/ We can therefore apply a martingale size estimate

(see [11, Appendix A]) to both terms and obtain

(B.4) E| sup |E3 (1) +ERn1)]| S (kn(sn)_l_sz}:I(kn/(sn)lm(knén)1+H(kn5n)l/25i/2»
te[0,T]

which is o((k,,0,)/?).

Lastly, let us come back to E}(t) if H = 3. As in the case of E}(t), bounding term
by term leads to an Op((k,d,)"/?) estimate, which is just not enough at the considered
rate. But we are allowed to modify E%(t) in the following way at no cost: we replace o
(which appears in y) by 0(;_1)s5, and a, (which appears in Ag,, s, — As, which in turn ap-
pears in D3, ;) by a(;—1)s,. Once these changes are made, the ith term in £ (t) will be
F(i—142k,)s, “measurable with zero F(;_1);, -conditional expectation, so we can conclude by
a martingale size estimate. O

Next, using integration by parts, we have that
>n,l L 14 L
Z3(8) = My (8) + Mg (t) + Qg (1),
where

[t/6n]— €+2 kn41

20 = (o) 2

i—142k,, )0,
: / A2 5 Gr((i— 1+ 0h,)5, — )

[u/d,]—i+1 ) (yu

x X( 2k, —1 - y[u/én]én)o-u"’/udu~

1
LEMMA B.2.  Under Assumption CLT’, if k > % then Mgl’e + Mgf + Mé"’g é 0.
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PROOF. By (A.2), the ith term in the summation in M;l’e(t), Mgge(t) and Mén’e(t) is of

order (k)7 (kpd,)L/255' 2. Therefore, by a martingale size argument, very similarly to
how we obtained (B.4), it follows that

E| sup | My (t) + Mas'(£) + My (1))
t[0,T)

< (knén)_l_sz_l(kn/én)1/2(knén)1+H(kn6n)1/25ylL/2,
O

which is o((k,d,)/?) if (and only if) x > 2H+1

LEMMA B.3.  Under Assumption CLT’, we have (knd,)"/?(Qy (t) — AnM ) L0
for any € > 2, where A?’g’k" is defined in (2.13). In addition, we have that .A?“C

Op(kn, /2= H) In particular if k> 2+12H, then (ky6,,)~ /2 At kn L% 0. The last condition
is satisfied with k = 2H+1 if and only if H > (\/5 — 1) =~ 0.3090.

PROOF. In a first step, we decompose Q47 (t) = Qi (t) + Qb3 (t), where

[t/0n]—(L+2)kn+1 2k, —1

n 10 1
0 =20k0) 7D 2 xm=)

(i+7)0n
<[ AL Gl 1+ )b~ )
(i—145)6,

(B.5) X (Yu — y(i+jfl)5n)(0'u77u - U(i+j71)6n"7(i+j71)5n)duv
) [t/6,]— (04+2)kn+1 2k, —1

n _1_op 1
QO =20kat) Y Z 7. =1)

(i+7)dn
></ A2 Grrl(i— 1+ lhy)Sn — u)
(i—14-45)6, '

X (Yu = Y(i4j=1)5, )0 (i—145)50 N(i—145)5, AU

Let us consider Qgég(t) first and interchange the sums over ¢ and j. For every fixed j, we
observe that the ith term is F(; ;)5 -measurable with vanishing J(;, ;_1)s,-conditional ex-
pectation. Moreover, similarly to (B.3),

(i47)0n g_ﬁ
/ A2 5 Grr((i 4+ Chn — 1)6, — )| du = (knd) 1 +5/2 / A2G (w)|du
(

i—147)0n =2
- (kn(;n)H+3/2
~ kn N
Therefore, for every j, the sum over ¢ is a martingale sum, which yields
" L kn(sn H+3/2 B
B sup Q5] < ()2 B0 g3 o))
€lo, n

2H
for all kK > THAT-
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Consequently, we only have to consider Qgiz(t) further, which can be rewritten as
1 [t/8,]— £+2 kotl (ig2k, —
—1/92— u/0n]—1
;ie(t) =2(ky6n) 1/2 HE / [ /Qk]ffrl)
x A3GH (L 4 0) (y — y[u/an](sn)(%nu = Ou/8,16, Mu /5,15, ) AU
1 ([t/0a]—tkn)s, ([w/Sn]+D)A([t/ ] — (€+2)kn+1) o)1
- 2(kn5n)1/2Hk/ > xX(M =)
nJ0 i=([w/8,]—2kn+2)V1
X A%GH(%:/% +0)(Yu = Yju/5,16.,) (Tullu = O[u/5,15, Mu/6,]5, )dU

([t/60]— k)5, OA([t/0n]—[u/dn]—(l+2)ks)

19— 1 i
= 2(knon) 1/2 Hk/o Z X(ﬁ)

n i=(1—2k,)V(—[u/d,])
x A3 G (L 4 0) (g = Yjuss10,) (Ot = s, 5. Muss 15, ) du-

Similarly to how we proved Lemma 3.5, one can use (A.4) to show that (k,6,)~"/2(Q%(t) —
Qgie(t)) L% 0, where
. Lo 1 ([t/60) k)5, 2K , ) i {u/6.)
Q1 (t) = 2(kndn) 1/ k‘/o D X)) ATGE (2 +0)
" i=0
X (Yu = Y[u/5,16,) (Cullu = O[u)5,15, Mu/s,]5, ) AU

In fact, we can further change the upper bound of the integral and replace Qgig(t) by

t2k

(B.6) Q3 (8) = 2(knda) /27" / X5 ATG (1o )

X (Y — y[u/an]m(au% - J[u/zsn]wu/wn)d“~

Indeed. by (A4). Elsupseio,r1| Q51 (t) — Qs (0)1] < (kndo) />~ 116,/ = o (k) 1/2).
Now recall the definition of x(t¢), which is —1 for ¢ < % and 1 for ¢ > % Therefore,

n 2(knon 1/2—H it
Qgif(t): ( ) / Z{AQ {kn/(sn}_i_é_l)

- A%GH(%Z/&"} + f)}(yu = Yu/6,16,)(Oullu = Ou/s,18, Mu/s,)5, ) AU

tkn—1

L 2(knon ) 1/2— H/ Z A3 ( _i+{u/5n})
— _ e et

X (Yu = Yuys,16,) (Oullu = Olu/s,15, Mu/s,1s, ) AU,

which shows that Qgie(t) is nothing else but the bias term .A?”E’k". This establishes the first
claim of the lemma. The second follows from (2.13) by observing that A3G f is a bounded
function (and, of course, that Y, — Yju/s,15, and ouly — O[u/s,1s, Mu/s,)5, are of order (51/ 2

and 55[ , respectively). The last two assertions are obvious. ]
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PROOF OF PROPOSITION 3.1. By (3.11), we have that

(i+kn—1 (i+kn—1)d,
J = —— s — Yls dys + —— s — Yls bsd
9 (i+kn—1)8, /s
b-drdys,
knon J(i-1)s, [5/62]16n
which implies
(420D o
XS ) (Us — Yis/5,16, )4Ys

i+
i, = J15 = kndn /(z-_nan
9 (

i+2k, —1)5,,

[s/6,]—i+1 _
+kn5n (=16, X( ok, —1 ) (ys y[s/én]cin)bsds

9 (i+2k,—1)dn [s/8,]—i+1 s
N (L=t / bydrdys.
knon J(i-1)s, Cai=r) [5/82]6n

Clearly, the last term is Op(y/0n/kn), while J7', , — Ji; = Op(y/1/ky). Therefore,
the contribution of the former to Z(£) is Op((kndn)~2H (kndn)hn /2 (60 /len)V/2) =
Op(kgl_QHé,{/Q_QH),Which, as the reader may verify, is op ((k,,0p, )1/2)f0ra11/<c€[ 2Ii 3.

Therefore,

(knn) "2 Z7(8) — M (1) & (kab) "2 (FP(E) + F3(E)),

where
[t/0n]—(0+2)kn+1

n —1—opm 1 i+ 2k =1)3n [s/6,]—i+1
FY'(t) = 4(kndn) . Z s X)) (Us — Yis/s,15,)dYs
(it (E+2)kn—1)5, ,
X / (Lol ity (516, )bsds,
(i4-Chn—1)60

[t/62)=(E+2knt1 (54 (142)k,—1)5,
1 o
(n6p) "' 72— /( (8]t

F2n(t) =4 L ok, —1
n i-+lky—1)6,

=1
(i+2k,—1)4,

X (Ys = Y(s/5.16,)AYs /( s XL (5 — yj 5,15, )bsdls.

Because ¢ > 2, the ith term in F3'(¢) is F(it(t+2)k,—1)s, -Measurable with a vanishing
F(i+ek,—1)s5,~conditional expectation. Thus, by a martingale size estimate (see [11, Ap-
pendix A]) and the bounds found in the previous paragraph, we obtain that

E[ sup \F;(t)y] < (k) T B e /00 (Kn02) Y 20y 6312 = (Kp6n) 26,
te[0,7

= 0((kn5n)1/2)

for all k € [2 T 3]. Regarding F7*(t), observe that if we just applied a term-by-term size
estlmate we would obtain (kn8,)~'/2F'(t) = op(1) if £ > 57 but only Op(1) if k =
5 H -1 To handle the latter case, note that we can replace b, in FI'(t) by bii-1)s, (by the
preceding arguments and (3.5), the error is op((k,d,)"/?)). After doing so, the ith in FJ(t)
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will have a zero F(;; ¢, —1)s5,-conditional expectation, so applying another martingale size
estimate yields F*(t) = op((knd,)"/?).

It remains to prove the last statement of the proposition. Because £ > 2, it is easy to see
that the ith term in (3.13) is F(;_14(¢42),)s, -Measurable while having a zero F;_1 4 ¢,)s,"
conditional mean. By yet another martingale size estimate, it follows that

E[ sup rMMm] < ()™ 2k o o h02 = o{ () )

t€[0,T]

for/<;>2H+1 UJ

APPENDIX C: DETAILS FOR SECTION 3.2

PROOF OF PROPOSITION 3.8. Let us start with M"M *(t). Interchanging summation

over ¢ with the dW/-integral in (3.15) and breaking the latter into small pieces of length
8, we can rewrite &, '/, b () = Z[?ﬁ”] (ke where

oo o= 'f)/2 —1-2H
g;ly]7£7k7L / /
=([r/dn]— f+2)/<:7l+2)v1

x {AinénGH((i — )6, — 1)AZ 5 G ((i+ Lk — 1)6, — )

[t/6,]— z+2)k 41

+ A% 5, Ga (i iy = 1)dn = 1)AR 5 Gar((i = 1) — ) fn,dWom, AW,

[t/0n]=[r/bn]—(t42)k

30 " .
R /( , / ( AfGy (R
J—

—(E+2)kn)V(=[r/bn])
5 [t/6n]=[r/bn]=2kn s
e {r/ by 7 %o, O+ Z A%GH(%)
i=(1=2kn )V (tk—[r/52])

x AIGy (et 4 r=u E)) MW, AW, .

Let us bound the pth moment of fg Jbkn gor p > 2 and draw some conclusions. By the

Burkholder—-Davis—Gundy inequality and similar steps to (3.22) and (3.23), we have that

gy s e[ (5 2 {ateuc=teD
J—

=1-2k,

x AT (SRl 4 15t 4 0) + Al (SR

] 2 /2
x AXGy (b 4 1= —E)}) dudr) .
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Changing (r — u)/(kn6y) to u and noticing that - >, x, is a Riemann sum, we obtain
from (A.1) that

s s (7 [ {stenomiontr s
(€2 + A2G () A2G (v +u— E)}dv) 2dudr>p/2
< P2,
Consequently, C m3bkn s of size 5717,/ 2, uniformly in 7. Because (3.15) is a sum of martin-

gale increments (note that E[C)" G| F(i-1s, 5,1 =0), it follows that (3.15) is Op(1). This
is, of course, expected because (3.15) is supposed to contribute to the CLT. But what this
calculation also shows is that before we try to find the limit of (3.15), we can make any mod-
ifications that lead to an op(1) error For example, we can replace 1, by 1(;_1)5, (this incurs

an Op(6H) error) and replace + 7 times the two sums after second equality in (C.1) by

/2 {A%GH( VA2G (v + )}dv

(for modifying the upper and lower bounds of the summation see the discussion after (3.23);

for the integral approximation, the error is at most k,, V21 pecause A2Gy is (% + H)-
7j7€7k’ﬂ

+0) + ATGH(0)ATGh (v + 5

Holder continuous). We will make two more changes, after which we will arrive at ¢
hence proving the second relation in (3.28): first, we replace change the boundaries of the
dW,-integral from [ to [, si-» where € > 0 is a small but fixed number. Similarly to
e(1—-H)

(C.2), one can show that the resulting error is dy, . And second, we replace 7, first by
M, _y, .-« and then by 1(;_1)s, , which leads to an Op((kyd,,~)™) error.

Similar arguments can be employed to show the other two approximations in (3.28). Note
that thanks to Proposition 3.1 and Lemma B.2, we only have to consider the case where
K= % In order to show the first approximation in (3.28), we interchange summation and
double integration in (3.13) and obtain

nZk (1) = 4(kndn) 1-opm 1 /[t/6 /[5/6 —(0=2)k )6 A([t/8,]— k)5,
tk (18/6n]— (£4+2)kn+1)6, VO

([s/0n]—Lhn+1)A([r /8] +D)A([t/0n] — (€+2)kn+1)
s/0p]—1—Lk,+1 r/0,]—i+1
X([/ ]2kn_1 + )X([ /ij_;_ )

i=(24[5/8 0] — (€4+2)kn )V (2+[r /6] — 2k )V1

X (Yr = Yjr/6,15,)0rdWr(Ys = Ys /5,15, ) TsAWs.
We change i + ¢k, — 1 — [s/6,] to i and, with similar arguments to those after (C.2), omit

the last A(---) and V(- - ) in the boundaries of both the dWW,-integral and the sum over i. As
a result,

t (5 s/6y, 8
5 (1- ﬁ)/2Mnan() 45 (1— K)/Q(k 5) 1—og 1 // /[/ J—(0=2)kn)
([8/6n]—(£42)kn+1)5,,

OA([r/bn]—[s/bn]+Ckn

:i - )X( [T/&,sz[(z/fﬁ}lfi+€k” )

i=(1= 2k )V ([r /8] —[5/0n]+(l—2)kn+1)

X (Yr = Ypr/6,16,)0rdWer(Ys = Ys /5,15, ) TsAWs.
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Because
0AMm . A
> X)X (552 = 2kné (F2),

i=(1—2k, )V (1~ 2k, +m)

the first approximation in (3.28) follows by replacing all o’s by o7,/s,1s, -
Regarding the last approximation in (3.28), we have analogously to (C.1) that

[t/5,]— Ly [t/6,]
5, Mg (1) = Z Gt 6, A (1) Z G,
(C.3) /6]
5;(1—5)/2Mén,€,kn(t): Z Eén,j,ﬁ,kn7
j=14Lk,
where

A([t/6x] [s/én} (L+2)k,,)

gtk 2(kndn) 7Y% H 5~ (1=r)/2 )
31 - kn X(m)

=(1—2k, )v —[s/6.])

x AFGy (L0 o 0 AW, (ys — ypays,15,)05AW s,

. H)/Q 6 A([t/60]— k)60

- 2(ky,,,) L/ 2 H 5, (1~ j

C ’]7Z7kn < _ys 6
2 K ([r/8n] — (E42)kn +1)5., vo( s/t

ON([t/0n]—[8/0n]—(l+2)k,)
X Z X(kaz_l)
i=(1=2kn)V([r/dn]=[5/6n] = (¢+2)kn+1)V(=[s/0,])

x AIGy (L) s 4 g AW, dW,,

Os

gk (k 8n)~ 1/2— H5 (1- r-e)/2 G0 [5/8,]—(€—2)kn )50 A([t/ 0]~k )6
: S
on(

[t/6n]—[s/0n]—2kn)

X (Ys = Y[s/5,]5,) Z X(2557)

1=(1—2k,, )V([r/0n]—[s/0n]+(l—2)ky+1)V (Lky—[s/5,])

x AFG (L smr ) AW, AW

Since K = 5 H 7> it can be shown similarly to (C.2) and the subsequent paragraph that
each of the three terms defined in (C.3) is of order Op(1). Therefore, by the same type of
modifications (i.e., discretization of 1 and o, dropping A(---) and V(---) in the summa-

tion over 4, approximating sums by integrals, and restricting the dW,.-integral in (3 gk
and (P90 1o 1 > s — k,617%), we obtain 6, - K)/Q(M;uegg (t) = Mgl\e?,’; (t)) =0 and
57 (=2 (gt () — R (1)) 25 0, where

[t/6n]—Lkn [t/3n]

nZk z : n,5,0,kn m .k, 2 : =m,j,l.k,
31\32 4.31\32 ) M C

j=1+Lk,
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and

C,j@k (k}(;) 1/2— H5 (1— m)/?/ 15 / / %
(—1)6., ] R

X AIG (5 4 L — w)dumi_1ys, AW (Ws = Wi;_1)5, ) AW,
J0n r
G = 2(k8,) M2 H g (122 / O, / (Ws = Wis/s,6,.)
(7—=1)é, ([r/6n]—(4+2)kn+1)d,,
(== —0)Vv0)
(C4) X /0 X(HAGH (- )dudWn;_1)s, dW,,

/njf k’ 1/271_] 7(175)/2 ja” 2 ([S/Jn]f(€72)kn)5n
G = 20kn0n)” on / U(j—l)csn/ (Ws —Wii1ys,)
(j—1)6, s—kn0:7¢

2—( ,jné:l VvO0) )
x / X(B)A2GH (25
0

Let us make three observations: First, for any of the three terms in (C.4), by a straightforward

power-counting argument, if we restrict the inner integral to ((7 — 1)d,, s) or ((j — 1)y, 7),
14+2H/(2H+1) — o(5,)
njs

)dun(] 1)6., dW,«dWs.

respectively, the second moment of the resulting term will be of order &,
showing that the latter is asymptotically negligible (cf. (C.2) and the subsequent arguments).
Second, by the definition of x(t),

2 1
/ X($)ATGH (5 +{—u)du = / AVGp (5 + 10— u—1)du.
0 0

And finally, because A?G'y(v) = 0 for v < —2, there is no harm in extending the du-integral

in ¢t and Mt k" up to the upper bound 2. The aforementioned modifications turn
G35 Lkn into (a3 s Z Fn and the sum G nagibkn 4 C'n’J Lkn into Cag 34k \which establishes the last
relation in (3. 28) O

PROOF OF EQUATION (3.35). For any v € {1,2,3}, we have seen in the proof of Propo-

sition 3.8 that E[|¢}" ook IP] < b2, uniformly in j. Setting p = 4, we easily obtain that the
left-hand side of (3.35) is Op(d,,). O

PROOF OF EQUATION (3.36). We only show (3.36) for v = 2 as the arguments for v = 1
and v = 3 are similar. Note that ¢} 36k can be decomposed into two parts, (y; JEkn and
<22,],€k , which are defined in the same way as (; Jbkain (3.30), except that the dW,,-
integral is restricted to (r — kn6L=¢ (j —1)d,) and ((j — 1)d,,7), respectively. By definition,

;7" belongs to the second Wiener chaos with respect to W, conditionally on F;_1)s .

n3:bkn belongs to th d Wi h ith resp W, conditionally on F;_1)s.
Thus, E[C;gj’e’k" (Njs, — N 13, ) | Fj—1)5,] = 0 by the orthogonality of Wiener chaoses
of different orders if N € {WV, W} and by the orthogonality of N and W otherwise. If IV is
orthogonal to W, we also have E[¢y;7"*" (N5, — N¢i—1ys,) | Fj—1)s,] = 0, so let us assume

that N = W or N = W. Since the two cases are completely analogous, we take N = W.
Then

n,5,0,kn
E[¢i""" (Njs, — Nij-1)s )|}—j71)6 ]

Jn
:5;(1_H)/2/(- / kndh™ s/ AQGH( )AIGH( ;62_‘_6)
J— T—
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+ A%GH(U)A%GH(U + ,:;512 — E)}dvn(jfl)(Snqun(jfl)JndT-

Since taking conditional expectation is a contraction on L2, this term is still of size Op(6,,).
Consequently, for the purpose of showing (3.36), we may replace 7(;_1)s5, and 79(;_1)s, in
the previous display by N(j—1—kyy 5755, and 1, _y_y, 5.<)s,> respectively. Once we have done
so, the resulting expression will be ]-"(] 1)6, -measurable with vanishing ]-"( T
conditional expectation. Therefore, by a martmgale size estimate (see [11, Appendix A]),
it follows that

[t/55]
(C.5) E{ > RGN (Ns, — Ng—s,) | Fii—ns ]H < (ka6 =) 26, > 0,
j=1
proving (3.36) for v = 2. O

PROOF OF EQUATION (3.33). Again let us start with v = 2. There is no loss of generality
to restrict ourselves to m = 1 and m’ = 2, in which case we simply write k&, = kg) and
Kl = k{2 We want to find the limit of

1/6.]
(C.6) Ry Fetekn () = 37 B[gp R g F s,

j=1
where (1,05 > 2, k,, ~ 615, and k], ~ 020, . Moreover, by the flexibility we have in the
truncation of the dW, w-integral in (3.30), we may and will assume that it runs from r —
kn61=¢ to 7 for both ¢k and ¢294% By 1t6’s isometry, we then have Ry (1) =

ZL:1 Rgztjz’kme% (t) where

[t/6n]

J0n r 0o
1,01 K 0
Rk ek §5 )| 4/ / / A2G (v
22,1 [7G-1)s.] PR A 72{ 1Gm(v)

X MG (v + L5+ 01) + AIGy (V) AT (v + 15 — El)}dv
x/ {A%GH(w)A%GH(w+,:,;5j+eg)
_2 3

+ A2GH (w)A2G y (w + e~ 62)}dwdudr,
[t/0n]

nfl,kn,fg,
Ry Z 6, )|’7(j—1)én‘2 / o 61 / LG (v
X NG (v + 1 4+ 00) + AJG g () A G (v + L —él)}dv
u o ,
x/ k 615/ {A%GH(w)A%GH(w+ZZ—§i+£2)+A%GH(w)

X A%GH(U) + 7];;_7;7: — 62)}dwn(j—l)dnqu’n(j—l)dnqudrv
[t/5n]

n€1,kn,£2, —(1—k
R223 (t)= Z 5n(1 )|77(j—1)5n‘ / o gl / A1GH
]:1 T—RnOn

x AZGp(v+ E + 0) + AIGH () ARG a (v + I — eg)}dv
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n

x / / {MGH(w) A Ca(w + 5 + () + AlGa(w)
r—knbn° J -2 e

x N3G (w + 1 — el)}dwn(j,l)gndwu,n(j,%qudr.

Repeating the argument leading to (C.5) shows that Rgég’k"’zz’k" (t) and R;ﬁ%k" Lok (t) are

Op((kn6;,%/6,)Y%6,) = Op((kn0L%)1/2) = 0p(1), and hence they do not contribute to the
limit of (C.6). So only R;;ik" ook (t) is asymptotically relevant.
By a change of variables ((r —u) /6.~ to u),
[t/3n]

01,k Lo K 4 30 Fndn™" oo 2

n,L1,Rn £2,K,,

R0 = 3 g, [ ] {ateuw
j=1 (1—1)6n 4O -2

x AIG (v + u% +01) + ATG(v)ATGH (v + uélif = 51)}dv

></ {A%GH(w)A%GH(wM% + £y)
2 n

7
n

+ A2G (W) A2G g (w + uls” — &)}dwdudr,

so we obtain Rgéﬁ’k”’&’k; (t) ~ 751’91’42’02 (H)I'y(t) once we establish

yGauat by / / {83Gu(0) 3G u (v +u/0 + 1)
0 —2

+ A3G (0) ARG (0 -+ /0y — ) fdv
(C.7

x / {A%GH(w)AfGH(w o/l + o)
—2

+ A2G (W) A2G g (w + /By — Eg)}dwdu.

By (2.12) (and its extension to £ € R as shown in the proof), the right-hand side equals

1 0o
4(2H + 1)2(2H +2)2 /0 (63 |w/01 + 01272 4+ 53 u/0 — 0,2 +2)

X (81|u/02 + L2 + 6w /02 — €5 H?)du

(C8) 1

- 4 2H+2 54 2H 42
T 4(2H 4+ 1)2(2H +2)2 </R<51!U/91 + 4] 63w/ + Lo du

+ / 8t u/Or + 1 [P35 /05 — €2|2H+2du> :
R
where the second step follows by symmetry. By Parseval’s identity,

/ 6t u/01 + 012268 w0y + £o)?H 2 du
R

Sg. |+ 0101 2265 |u+ L2022 2 du

1
(C.9) (010,)2H+2 /R

1 i(£10,— 0,0, 2H 42/ )2
_27%9192)21“2/{( K26

x (egielg _ ef%i91§)4(€%z€2§ _ efgiagg)zidg.
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The product (e21€ — ¢~ 30184 (39024 _ ¢=3102€)4 tranglates into 531 532 in the time domain.
Together with (A.8), this yields

/ Ot /01 + 0[PP 26 /0y + Lo 2 du
R

_ 2cos’(n(H +3))L(2H +3)° / ¢i(00—EaB2)€ | | ~1H 6
W(9192)2H+2 R

N R R R R

4cos?(m(H + 3)) cos(m(2H + 3))T'(2H + 3)*T(—5 — 4H)
- B ShLIe 01,

where the last step is valid for all H € (0,3) \ {1}. Insertmg this into (C.8) and simplifying
the resultlng expression, we finally obtaln (C7)if H ¢ {: i 2} To obtaln the results for
H e { I 2 , it suffices by the dominated convergence theorem to let H — 7 Land H — 2
the formula estabhshed for He(0,1) \ {1} As there is no singularity at H = £, this formula
contlnues to hold for H = 3. For H = 1, it suffices to note that (1—1/ cos(27rH N(H-1)—
27r as H — 1 and that

54,64 202 — 016 |+

iy = =457 6. [[€202 — £161|° log|l20 — €161]]
by L’Hbpital’s rule.
Next, we consider v = 1. As in (C.6) we want to find the limit of
[t/6n]
Ry b ) = 3 BIGA GE| F g ]
j=1

where (1,05 > 2, ky ~ 016, and k], ~ 026, % with r = 571+
By Itd’s isometry,

[t/30]
bel,kﬂ,eg, K—
R " (t) = 640571(6162) 12H52Z/ 0(] s

([5/671'}7([172)]67) n h) 5 00k
< E [/ g( o=l oulbon y (7, — W, 515, ) AWV
([s/6n]—(b1+2)kn+1)5, "

([o/0n]=(Ca=DR0)Sn s 1 Lo j6ul o
X / (g ) (W — Wi s,06, ) AW
([s/8n] = (L242) k7, +1)6n "

X (Ws = Wigss,5,)° ‘ f(j—l)&n} ds.

Further conditioning on Fs/5,15, = F(j—1)s,, We can replace (W — W/, /5n]5n)2 simply by
s — (j — 1)0,,. Hereafter, we can further remove the boundaries of the two dWV,-integrals
because &(t) = 0 for |¢| > 1. Consequently,

[t/6n]

JOn
n,fl,kn,fz,k; K— —1— _ i
Ryj (t) = 645, 1(‘9192) ! 2H5n2 E ‘7(8;'—1)&, /( 16 (s = —1)d)
i J—1)0n

x / gL lefonl 4 G0l 4 52 (1 — [ /3,)00 ) drds.
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Changing r — [s/0,]d,, to u, we can write

[t/6n] 360
Ry (1) = 6465 (0162) 71245, Z U(J 1)é /( 1)6 (5= =1))

/ sl + el + 4 (u - [u/.)6,)duds

[t/6x] 6
= 64551(0,09) 71 252 Z U?j—l)én / (s—(j— 1)6,)
j=1 (j—1)6x
: Z / s, SR+ B+ F) 0 = (= d)duds

Computing the duds-integrals and observing that 6, > >° _ and 0, Z[t/ are Riemann
sums, we have that

R Rk 1) L 16(6,05) 71 2H/ 8ds/§ b+ ) (g + 4)dv.

Next, we realize that £(¢) is equal to —$47|z| evaluated at z = 2¢. Thus,

Rk bR ) 0 (0105) 22T (1) /R 54 [0+ 1601|540+ £205dv.

It remains to derive a closed-form expression for the integral. By Parseval’s identity and
(A.8) (and a limit argument noting that 2I"(a + 1) cos(ﬂ(a;l)) — § as a — —4), it is given
by

2 . 1, 1. 1. 1. 1
2 [ oot e e iy — 25 6 |0~ bl
R

™

which completes the proof of (3.33) for v = 1.

Finally, let us consider ¥ = 3 and, as a first step, note that

[t/8,]
1,01k Lo,k 1,5,01,Kn ~1,5,E2 k7, _
(C.10) Ry (6) = > BIGE G | Flyns,] =0
j=1
because E[W; — W(;_

(j—1)s,,) = 0. Thus, it remains to find the limits of

[t/0.]
n7£1»k‘n7€27 ely .7 Zz,
(C.11) R31\32,31\32 Z E[ C31{32 431|32 ’]:(J 1)6 5.
To this end, we define
K1
(C.12) Gu(t) = (/2

such that fol Gp(t —u) "1 2dy = Gy (t) — Gy (t — 1) for all t € R and therefore,

1
(C.13) / AYG —u—1)du= 056Gy + 1)
0 nUn
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for all £ € R. Analogously to the arguments between (C.6) and (C.7), it suffices to consider,
instead of R;Ll%zkgl%;" (t), the simpler terms

[t/6,]

1L,k fz,k; — — /1
R31 31 (t) = 4(kndn) 1/2 H(k:zé )" e H5 4 Z/ ?j—l)én‘n(j*1)5n|2
(C.14) x/ (0191 (5 )+ 01Gm (7 )
s—kndn

x@EM%&+@HJEMﬁ%—@»w@—w—n%ﬂs
and

(/6] js,
nfl»km@z, — — — — —(1—k
R3 35 " (t) = 4(kndn) 12 H(k;zén) 12 H5n(1 )Z /( 1 UEIJ'—I)én‘77(j*1)5n|2
j=1 J—1)0n
(C.15)

(3-1)
X / (5ng(€1 - ;:ﬂ:;i)ﬁlgH(ﬁg - ﬁ)( [s/0n]0n)dsdr.

r—((l14+2)k, A(l2+2)K7) 0,
In (C.14), changing (s —r)/6.7" to w and s — (j — 1)d, to v, we obtain

[t/8,]
”n,@l,kn,ég,kil
R31,31 (t) = 4(kndn)~ e (kndn B Z/ I(j-1)6., |TIJ 1)é ’

ke dr—e
X / (6101 (u— + 61) + 681G (u— — 01))
X (014G (u’s" + £a) + 61Gr (us" — £2))du - vy
~ P s Ta(1),
where
01,01,05,0 2 /00 1 .
1,V1,£2,U2 - = 5 0 E 6 9 _é
(C.16) P3131 (0102)1/2+H (017G (u/60h + 1)+ 681G (u/01 — 1))

X (031G (u/0s + £o) + 61Gr (u/0y — £3))du.

Similarly, changing (r — s)/31 7" to u, we derive

[t/6n]
n Zl ,kh“zz,k
R 32 () = 4(kn0n) "V (K 5,) 7Y/ H Z/ ?jf1)5n"7(j—1)5,,L|2
% T (5tGu(t — =)+ 01Gn (o — ur))

r—(—1)dn
o

X (1 —ubr™" — [r/8, — ud, |6, dudr

[t/0n]
~ Ak 6) I (R0,) VAN T ol s, InG-s, |
j=1
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(£1+2)kn A(L2+2) k],
_— s

o NG ORI O S)

J0n
X / (r — udL™r — [r/8, — ud, *|6,)drdu.
(1—1)6x

Note that the last dr-integral equals fod" rdr = %5%, so that

t
N1k L2k, 01,01,02,02 4 2
R35 35 (t) ~ p3335 os|ns|“ds,
0
where

01,016,602 2
(C.17) payz5 " =

(9192)1/2+H 0

(@1 +2)01/\(£2 +2)92
/1 61Gw (01 —u/01)81GH (Lo —u/0)du

Using the fact that 617Gy (t) = 0 for t < —2, we can extend the previous integral up to +oo,
which shows that

0,01,02.00 | r,01,02,0 2
P3131 | TPz = (6:09) 1/ /R(CS%QH(U/Gl +0) 461G (u/6) — (1))

X (601G (u/0s + la) + 61Gr (u/0s — £o))du.

We want to show that this is exactly 7Z1’91’£2’92 (H), which would then finish the proof of
(3.33). Switching to the Fourier domain, we use (A.7), (A.8), (A.9) and (2.7) to obtain

/ 5%QH(U/91 + 51)5%QH(U/02 + 4o)du
R

_ Ky’
= (0102)H+3/2(H+ %)Q(H—F %)2
—2 1\2
_ K “T'(H + 5) /€i§(£1018202)6i7r(H+5/2)/2(€ o i0)7H75/2
27 (60162) 7432 J
« 6i7r(H—|—5/2)/2(§ _’_7;0)—H—5/2(6§i915 _ 6_%i91£)4(6éi025 _ 6—%i92§)4d§

/$&m+ww)H””%(u+@af”W%

_ Sln(T('H)F(2H+ 1) i€(010,—0205) | | —2H -5 _Lif,¢ —Ligig\d, Lifye Ligyend
T 2m(616) 132 /6 [3 (31016 _ o= 31006 YA (31026 _ o= Fi0aE YA e

sin(nH)['(2H + 1)I'(—2H — 4) cos(m(H + 2 o
_ ( ) ( ) ( - ) ( ( )) (9102) H 3/2531532‘£202 —6191‘2H+4
for H € (0, 5). The last fraction is equal to —1/(32(H + 3)(H + 1)(H + 2)(H +2)), which

shows that pgll’%ll’&’% + pgg?;f?’% = 751’91’52’92 (H) for H € (0, ). As before, the expression

for H = 2 can be obtained by letting H % , and since there is no singularity at H = 2 in
the formula defining 'yzl’el /b2,62 (H), it remains valid for H = 1. O

PROOF OF EQUATION (3.34). Let us start by showing that

01,k 2 /o] V4 l P
7,61, 2’ 7] 17 n 7] 25
Ry 31i30 Z E[GH Cti ™ | Fimays,] — 0.
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By (3.30) and (3.31) and Itd’s isometry, we have

t/én] G6n

n,él,km&, _H _ —K
Ry t)=-2 Z k) "1 S0 )/(j_m i—1)8, 1),

/ / ASGH k’5 —|—£2—'LL—1)
s—k! 8L ¢

+AIGH (S~ —u— 1)}dun(j,1)5ndWr
y / / [A3GH(0)AGr (v + 15+ 01)
i—1)8, J—

+ A () ATG (v + o — El)}dvdwds.

E ]CL,£7 ‘€7ku‘€7 1 yvn
For each j, we know from the analysis of Ryy """ and Ryj 37" that (3 bk and

C31 mdike ke, are of order Op(dn/ ), uniformly in i. Therefore, we are free to modify terms in
the previous display as long as it leads to an asymptotically vanishing error. For example, for

: 2 2 2
any fixed j, we may replace TCi—1)5,M—1)6. and 1(;_1)5, by O 1k 6298, M1 k! 5=5)6.
and N(G—1—k,67°)6,> respectively. Once we have done so, the resulting term, for fixed j, will
be F(;-1)s, “measurable with vanishing F(j—1-k 575, -conditional expectation. Thus, by

a martingale size estimate (see [11, Appendlx A)), the sum over j will be of magnitude

Op(5ﬁ(ﬂ+€+1)/2571/251/2) op(1), proving R;’gi’k"’&’k/" ~ 0.
The reasoning for R; g;kmg% is similar. Again by It6’s isometry,
41,k 0 e Jon
Rg:g; nl2,k - _9 Z k/ 1/27H6;(17n) /( b ‘7(2]'_1)5,1‘77(j71)6n|2
J=1)dx

(] 1)6., 1
X / / AYG(ly — o —u— 1)du(Ws = Wigs,35, )dW
,(g2+1)k’ On !

x/ / A2G (v ){AlGH(qH— w )
r—kndn¢ on

) }dvn(j—l)én dWwdT.

We can now use integration by parts to expand the product of the dW-integral and the dW,-

integral. As in the analysis of Rg ?ﬁk ook above, the martingale terms can be shown to be

negligible. So only the quadratic variation part remains and
[t/n] is

JO0n
nel7kn»e27 — —(1—kK
R2 32 ~ =2 Z k/ 12 H5n(1 )/(A s U(2j—1)5n”'7(3’—1)6,,|277(j—1)5n
J— n

(j—1)dn
5 / / AJGr(ly — 5 —u—1)du(Ws — Wigs,15,)
r— (b2 1)k’ 5, J0 "

></ NG MG+ 5+ 00) + MG (o + 15 — 1) bdvdsa.
—2

Now we apply the same trick as before: we first shift the index of O'(Qj_l) 5. 1MG-1)s, |277(j—1)5n
to (j — 1 — (¢2 + 1)kJ,)d,, and then realize that the conditional expectation of the resulting
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expression given JF(;_1_(¢,+1)k:)s, 1S zero. Thus, by another martingale size estimate, we
161k o ,

obtain Iy’s, " 2 0. Since the proof of
01k o K, & i\ 0k 105,00k, P
N,L1,Kn,k2,K,, _ Nn,7,£1,KRn ~1,7,£2,K,,
R (1) = D B G ™™ | Fyops,] — 0
J=1

is very similar, we omit the details and leave it to the reader. Lastly, by It6’s isometry, we
have
[t/6]

N, 01,k L 7k:L 3Jilkn n,j,¢ 7k:‘/”,
Ry (t) = Z B¢ (357
j=1

]:(jfl)én] = 0. D
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