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In recent years, there has been substantive empirical evidence that
stochastic volatility is rough. In other words, the local behavior of stochas-
tic volatility is much more irregular than semimartingales and resembles that
of a fractional Brownian motion with Hurst parameter H < 0.5. In this pa-
per, we derive a consistent and asymptotically mixed normal estimator of H
based on high-frequency price observations. In contrast to previous works, we
work in a semiparametric setting and do not assume any a priori relationship
between volatility estimators and true volatility. Furthermore, our estimator
attains a rate of convergence that is known to be optimal in a minimax sense
in parametric rough volatility models.

1. Introduction. For many years, continuous-time stochastic volatility models were pre-
dominantly based on stochastic differential equations driven by Brownian motion or Lévy
processes. But more recently, [21] found empirical evidence that stochastic volatility is ac-
tually much rougher than semimartingales, in the sense that it locally resembles a fractional
Brownian motion with Hurst index H < 0.5, a statement that was further supported by other
empirical work based on both return data [9, 20, 22] and options data [8, 19, 34].

The data-driven approach of [21] to uncover rough volatility starts by considering high-
frequency log-price data {xiδn : i= 0, . . . , [T/δn]}, where for example δn = 5 min and T =
1 year. In a next step, daily realized variance estimates are calculated from the formula

(1.1) RVj =

kn∑
i=1

(δn(j−1)kn+ix)2, j = 1, . . . , [T/(knδn)],

where δni x = xiδn − x(i−1)δn and kn = 78 is the number of 5 min increments during one
trading day. On a one-year horizon, RVj can be viewed as daily spot volatility estimates. In
a next step, realized power variations of logRVj , that is,

m(q,∆) =
1

[T/∆]

[T/∆]∑
j=1

|logRVj∆ − logRV(j−1)∆|q

are computed for different values of q > 0 and ∆ ∈ {1 day,2 days, . . .}. If logRVj were
discrete observations of a continuous Itô semimartingale, then one would expect thatm(q,∆)
scales as ∆q/2, implying that the slope ζq in a regression of logm(q,∆) on log ∆ satisfies

ζq/q ≈
1

2
.
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However, for large set of high-frequency data, [21] consistently found values of ζq/q < 1
2 ,

indicating that stochastic volatility locally behaves as a fractional Brownian motion with
Hurst parameter H < 1

2 .
As was pointed out by [9, 20], the above approach rests on the assumption that realized

variances have the same scaling behavior as the true unobserved volatility. At the same time,
it is well known (see e.g., [3, Chapter 8]) that in the absence of jumps and if volatility is a
semimartingale, spot volatility estimators of the type (1.1) converge to true volatility plus a
small modulated white noise. In a first attempt to take estimation errors for spot volatility
into account, [9, 20] assume that

(1.2) logRVj = log true volatilityj + εj ,

where εj is a zero-mean iid sequence that is independent of everything else. Under assump-
tion (1.2), [9, 20] derive consistent estimators of the roughness parameter H in parametric
rough volatility models and uphold the conclusion of [21] that volatility is rough in a large
set of financial time series. We also refer to [10], where the authors assume (1.2) with slightly
different assumptions on (logRVj , εj), and to [38], where a central limit theorem (CLT) for
H is established under (1.2) (see also [42]).

This paper aims to substantially generalize the aforementioned results in two directions:
first, we establish consistent and asymptotically mixed normal estimators ofH in a semipara-
metric setting, where except for H all other model ingredients are fully nonparametric; and
second, we shall do so without assuming any relationship (such as (1.2)) between volatility
proxies and true volatility. The rate of convergence of our best estimator is

(1.3) δ−1/(4H+2)
n ,

which as our companion paper [13] shows is optimal in a minimax sense in parametric rough
volatility models. In follow-up work, we will discuss the finite-sample performance of our
estimators and leverage the results of this paper into real data applications. Also, the inclusion
of price jumps [2, 28] and the separation of volatility jumps from volatility roughness [14]
are left to future research.

The remaining paper is structured as follows: in Section 2, after introducing the model
assumptions, we state the main technical result of this paper, Theorem 2.1, a CLT for volatility
of volatility (VoV) estimators in a rough volatility framework. The proof will be given in
Section 3, with certain technical details postponed to Appendices A–C. Section 4 discusses
how we turn Theorem 2.1 into rate-optimal and feasible estimators of H . In addition to a
usual application of the delta method, the rough volatility setting requires us overcome two
distinct challenges:

• eliminating a nonnegligible asymptotic bias term for which we do not have a sufficiently
fast estimator;

• constructing an optimal sequence kn for spot volatility estimation that depends on the
unknown parameter H without losing a marginal bit of convergence rate.

Our final estimator Hn for H is given in Equation (4.34). As Theorems 4.3 and 4.5 show,
Hn is a feasible and rate-optimal estimator of H if H ∈ (0, 1

2) and is equal to 1
2 with high

probability if volatility is a continuous Itô semimartingale.
In what follows, we write A.B if there is a constant C ∈ (0,∞) that does not depend on

any important parameter such that A ≤ CB. Furthermore, if An(t) and Bn(t) are stochas-
tic processes, we write An ≈ Bn if E[supt∈[0,T ]|An(t) − Bn(t)|]→ 0 as n→∞. For two
sequences an and bn we write an ∼ bn if an/bn→ 1 as n→∞. If x ∈ Rn, we denote its
Euclidean norm by |x|. For any α ∈R, we write xα+ = xα if x > 0 and xα+ = 0 otherwise. We
also use the notation N = {1,2, . . .} and N0 = {0,1,2, . . .}.
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2. Model and CLT for VoV estimators. On a filtered probability space (Ω,F ,F =
(Ft)t≥0,P) satisfying the usual conditions, we assume that the log-price x of an asset is
given by a continuous Itô semimartingale of the form

(2.1) xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs, t≥ 0.

We assume that the squared volatility process c= σ2 satisfies

(2.2) ct = c0 +

∫ t

0
asds+

∫ t

0
g̃(t− s)η̃sds+

∫ t

0
g(t− s)(ηsdWs + η̂sdŴs),

where

η2
t = η2

0 +

∫ t

0
aηsds+

∫ t

0
g̃η(t− s)θ̃sds+

∫ t

0
gη(t− s)θsdW̄s,

η̂2
t = η̂0 +

∫ t

0
aη̂sds+

∫ t

0
g̃η̂(t− s)ϑ̃sds+

∫ t

0
gη̂(t− s)ϑsdW̄s.

(2.3)

The ingredients of (2.1)–(2.3) are assumed to satisfy the following conditions.

ASSUMPTION CLT. Suppose that the log-price process x is given by (2.1) with the fol-
lowing specifications:

1. There is H ∈ (0, 1
2 ] such that the squared volatility process ct = σ2

t satisfies (2.2) with η
and η̂ given by (2.3). The variables x0, c0, η2

0 and η̂2
0 are F0-measurable.

2. The processes a, b, aη and aη̂ (resp., θ and ϑ) are adapted and locally bounded real-
valued (resp., R1×4-dimensional) processes. Moreover, for all T > 0, we assume that

(2.4) lim
h→0

sup
s,t∈[0,T ],|s−t|≤h

{
E[1∧ |bt − bs|] +E[1∧ |at − as|]

}
= 0.

3. The processes η̃, θ̃ and ϑ̃ are adapted, locally bounded and for all T > 0, there is KT ∈
(0,∞) such that

(2.5) sup
s,t∈[0,T ]

{
E[1∧ |η̃t − η̃s|] +E[1∧ |θ̃t − θ̃s|] +E[1∧ |ϑ̃t − ϑ̃s|]

}
≤KT |t− s|H .

4. The processesW and Ŵ are independent standard F-Brownian motions and W̄ is a four-
dimensional F-Brownian motion that is jointly Gaussian with (W,Ŵ ). The components
of W̄ may depend on each other and on (W,Ŵ ).

5. We have

(2.6)
g(t) = gH(t) + g0(t), gη(t) = gHη(t) + gη0(t), gη̂(t) = gHη̂(t) + gη̂0(t),

g̃(t) = gH̃(t) + g̃0(t), g̃η(t) = gH̃η(t) + g̃η0(t), g̃η̂(t) = gH̃η̂(t) + g̃η̂0(t),

where

(2.7) gH(t) =K−1
H t

H−1/2
+ , KH =

Γ(H + 1
2)√

sin(πH)Γ(2H + 1)
,

and Hη,Hη̂ ∈ (0, 1
2 ], H̃, H̃η, H̃η̂ ∈ [H, 1

2 ] and g0, g
η
0 , g

η̂
0 , g̃0, g̃

η
0 , g̃

η̂
0 ∈C1([0,∞)) are func-

tions vanishing at t= 0.
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Let us comment on the conditions imposed in Assumption CLT. Except for the parameter
H , the assumptions on x, c, η and η̂ are fully nonparametric and designed in such a way that it
contains the rough Heston model [17, 18] as an example, which is a particular important one
as it is founded in the microstructure of financial markets [16, 29]. Note that we allow c, η and
η̂ to have both a usual (differentiable) and a rough (non-differentiable) drift. Moreover, by
consideringW , Ŵ and W̄ , we allow for the most general dependence between the Brownian
motions driving x, c, η, η̂. Also note that Hη and Hη̂ are not coupled with H , so the VoV
processes η and η̂ can be much rougher than the volatility process c itself.

We should also mention that, because of the various g0-functions in (2.6), the kernels in
(2.2) and (2.3) are only specified around t= 0. In particular, H , Hη and Hη̂ are parameters
of roughness and are not related to long-range dependence / long-memory / persistence. This
distinction is important as [9, 36, 37] point out.

If c was directly observable, a classical way to feasibly estimate H would be to prove a
joint CLT for realized autocovariances δ1−2H

n

∑[T/δn]−`
i=1 δni c δ

n
i+`c with different values of

` ∈ N0 and then to obtain an estimator of H from the ratio of two such functionals; see [6,
11, 12, 15, 24, 26, 33]. Since we do not observe c, we first consider spot volatility estimators

ĉnt,s =
1

knδn
Ĉnt,s, Ĉnt,s =

[(t+s)/δn]−1∑
i=[t/δn]

(δni x)2, δni x= xiδn − x(i−1)δn ,(2.8)

where kn ∈ N and kn ∼ θδ−κn for some κ, θ > 0. Then we form realized autocovariances of
these spot volatility estimators by defining

Ṽ n,`,kn
t = (knδn)1−2H 1

kn

[t/δn]−(`+2)kn+1∑
i=1

(
ĉn(i+kn)δn,knδn

− ĉniδn,knδn
)

×
(
ĉn(i+(`+1)kn)δn,knδn

− ĉn(i+`kn)δn,knδn

)(2.9)

for `≥ 0. Note that we write [x] and {x} for the integer and fractional part of x, respectively.
The normalization in the last line is chosen in such a way that Ṽ n,`,kn

t converges in prob-
ability. In the semimartingale context (with H = 1

2 and ` = 0), the functional Ṽ n,0,kn
t was

used in [40] to estimate the integrated VoV process
∫ t

0 (η2
s + η̂2

s)ds (see also [23, 32]). Still in
the semimartingale framework, functionals similar to (2.9) have also been investigated in the
literature to estimate the leverage effect; see [1, 4, 5, 30, 39, 41].

To state a CLT for Ṽ n,`,kn for H < 1
2 , we have to introduce some additional notation:

for n ∈ N, h > 0 and a function f : R→ R, we define the forward and central difference
operators by

∆n
hf(t) =

n∑
i=0

(−1)n−i
(
n

i

)
f(t+ ih), δnhf(t) =

n∑
i=0

(−1)i
(
n

i

)
f(x+ (n2 − i)h),

respectively. For n= 1, we simply write ∆hf(t) = ∆1
hf(t) = f(t+ h)− f(t) and δhf(t) =

δ1
hf(t) = f(t+ h

2 )− f(t− h
2 ). Moreover, given α ∈R, we use the shorthand notation ∆n

ht
α
+

or ∆n
h|t|α for ∆n

hf(t) where f(t) = tα+ or f(t) = |t|α (δnht
α
+ and δnh |t|α are used similarly).

Finally, for any d ∈N, we use st
=⇒ to denote functional stable convergence in law in the space

of càdlàg functions [0,∞)→ Rd equipped with the local uniform topology. The following
CLT is the main technical result of this paper.
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THEOREM 2.1. Let d ∈ N and `1, . . . , `d ≥ 2 be integers. Furthermore, consider deter-
ministic integer sequences (k

(1)
n )n∈N, . . . , (k

(d)
n )n∈N such that for some κ ∈ [ 2H

2H+1 ,
1
2 ] and

θ1, . . . , θd ∈ (0,∞) we have k(j)
n ∼ θjδ−κn for all j = 1, . . . , d. For each j = 1, . . . , d, let

(2.10) Zn,jt = δ−(1−κ)/2
n (Ṽ

n,`j ,k(j)
n

t − V `j
t −A

n,`j ,k(j)
n

t ),

where for `≥ 2, we define

(2.11) V `
t = ΦH

`

∫ t

0
(η2
s + η̂2

s)ds

with

ΦH
` =

δ4
1 |`|2H+2

2(2H + 1)(2H + 2)

=
(`+ 2)2H+2 − 4(`+ 1)2H+2 + 6`2H+2 − 4(`− 1)2H+2 + (`− 2)2H+2

2(2H + 1)(2H + 2)

(2.12)

and for a general integer sequence kn,

An,`,knt =−
2K−1

H

H + 1
2

(knδn)−1/2−H
∫ t

0

1

kn

kn−1∑
i=0

∆3
1(`− 1− i+{u/δn}

kn
)
H+1/2
+

×
∫ u

[u/δn]δn

σvdWv(σuηu − σ[u/δn]δnη[u/δn]δn)du.

(2.13)

Under Assumption CLT, the process Znt = (Zn,1t , . . . ,Zn,dt )T satisfies the joint CLT

(2.14) Zn st
=⇒Z,

where Z = ((Z1
t , . . . ,Zdt )T )t≥0 is a continuous Rd-valued process that is defined on a very

good filtered extension (Ω̄, F̄ , F̄ = (F̄t)t≥0, P̄) of the original probability space (see e.g. [27,
Chapter 2.1.4]) and conditionally on F is a centered Gaussian process with independent
increments and F -conditional covariance function

(2.15) Cjj
′

t = Ē[ZjtZ
j′

t | F ] =

3∑
ν=1

γ
`j ,θj ,`j′ ,θj′
ν (H)Γν(t).

In the last line,

(2.16) Γ1(t) =

∫ t

0
σ8
sds, Γ2(t) =

∫ t

0
(η2
s + η̂2

s)
2ds, Γ3(t) =

∫ t

0
σ4
s(η

2
s + η̂2

s)ds

and for arbitrary `, `′ ≥ 2 and θ, θ′ ∈ (0,∞),

γ`,θ,`
′,θ′

1 (H) =
δ4
θδ

4
θ′ |`θ− `′θ′|3

3(θθ′)2H+2
1

{
κ=

2H

2H + 1

}
,

γ`,θ,`
′,θ′

2 (H) =
Γ(1 + 2H)2(1− 1/ cos(2πH))

4Γ(6 + 4H)(θθ′)2H+2

× δ4
θδ

4
θ′
[
|`θ− `′θ′|4H+5 + |`θ+ `′θ′|4H+5

]
,

γ`,θ,`
′,θ′

3 (H) =−
δ4
θδ

4
θ′ [|`θ+ `′θ′|2H+4 + |`θ− `′θ′|2H+4]

8(H + 1
2)(H + 1)(H + 3

2)(H + 2)(θθ′)2H+2
1

{
κ=

2H

2H + 1

}
.

(2.17)
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If H = 1
4 , γ`,θ,`

′,θ′

2 (H) is defined via continuous extension by

(2.18) γ`,θ,`
′,θ′

2 (1
4) =

δ4
θδ

4
θ′
[
|`θ− `′θ′|6 log|`θ− `′θ′|+ |`θ+ `′θ′|6 log|`θ+ `′θ′|

]
5760(θ′θ′)5/2

.

A few remarks are in order. Theorem 2.1 is a joint functional stable CLT for d realized
autocovariances of the form (2.9) with potentially different lags `j and sequences k(j)

n that
are of the same asymptotic order δ−κn but potentially with different constants θj . We include
this multivariate CLT not for the sole purpose of pursing utmost generality but really because
we need it in Section 4, when we construct a rate-optimal estimator of H . For technical
reasons, we need `≥ 3 in Section 4, which is why we only consider `≥ 2 in Theorem 2.1.
(If `= 0,1, an additional dominating bias term appears; since we do not use this result, we
refrain from stating it.) The upper bound on κ could be relaxed to some extent (we will not
need this), but the lower bound cannot. Since taking the lower bound κ = 2H

2H+1 yields the
optimal rate of convergence given in (1.3), one might be tempted to take a shortcut by just
proving Theorem 2.1 for that value of κ, but unfortunately, we will need Theorem 2.1 with
a general κ in Section 4. An informal argument why (1.3) is the optimal rate is given after
Equation (3.10) below; a formal proof is the subject of our companion paper [13].

For any value of H ∈ (0, 1
2 ], the functional Ṽ n,`,kn

t converges in probability to the law
of large numbers (LLN) limit V `

t given in (2.11), which is given by integrated VoV times
a constant ΦH

` (given in (2.12)). It is the dependence of this constant on H that allows
us to construct an estimator of H from Ṽ n,`,kn

t . If κ > 1
2H+2 , the proof below (more pre-

cisely, Lemma B.3) shows that An,`,knt = oP(δ
(1−κ)/2
n ), so Ṽ n,`,kn

t satisfies a CLT with rate
δ
−(1−κ)/2
n by (2.14). For the optimal κ= 2H

2H+1 , this is true if and only if H > 1
4(
√

5− 1)≈
0.3090. For other values of κ (in particular, for small H if we take the optimal κ), the bias
term An,`,knt does not converge to 0 fast enough. Even worse, we were not able to find a
debiasing statistic that converges to An,`,knt sufficiently fast. This is why we have to resort
to a nonstandard debiasing procedure in Section 4. The distribution of the limit Z is mixed
normal, with a fully explicit covariance function Ct. To make this CLT feasible, we exhibit
consistent estimators of Ct in Proposition 4.4.

The next section is devoted to the main ideas in the proof of Theorem 2.1. The reader who
wishes to first understand how this limit theory can be applied to feasible estimation of H
can first jump to Section 4.

3. Proof of Theorem 2.1. The proof of Theorem 2.1 essentially consists of two parts:
an approximation step (see Section 3.1), where we isolate terms that contribute to the limit Z
in (2.14), and a CLT step (see Section 3.2), where we actually prove their stable convergence
in law to Z .

Let us start with a remark about drifts: by the stochastic and ordinary Fubini theorem,∫ t

0
g0(t− s)ηsdWs =

∫ t

0

∫ t

s
g′0(r− s)drηsdWs =

∫ t

0

∫ r

0
g′0(r− s)ηsdWsdr,∫ t

0
g̃0(t− s)η̃sds=

∫ t

0

∫ t

s
g̃′0(r− s)drη̃sds=

∫ t

0

∫ r

0
g̃′0(r− s)η̃sdsdr,

and similarly for other integrals, so we can rewrite (2.2) and (2.3) as

ct = c0 +At +

∫ t

0
gH(t− s)ηsdWs, η2

t = η2
0 +Aηt +

∫ t

0
gHη(t− s)θsdW̄s,

η̂2
t = η̂2

0 +Aη̂t +

∫ t

0
gHη̂(t− s)ϑsdW̄s,

(3.1)
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where ηt = (ηt, η̂t), Wt = (Wt, Ŵt)
T and

At =

∫ t

0

(
as +

∫ s

0
g′0(s− r)ηrdWr +

∫ s

0
g̃′0(s− r)η̃rdr

)
ds+

∫ t

0
gH̃(t− s)η̃sds,

Aηt =

∫ t

0

(
aηs +

∫ s

0
(gη0)′(s− r)θrdW̄r +

∫ s

0
(g̃η0)′(s− r)θ̃rdr

)
ds+

∫ t

0
gH̃η(t− s)θ̃sds,

Aη̂t =

∫ t

0

(
aη̂s +

∫ s

0
(gη̂0)′(s− r)ϑrdW̄r +

∫ s

0
(g̃η̂0)′(s− r)ϑ̃rdr

)
ds+

∫ t

0
gH̃η̂(t− s)ϑ̃sds.

(3.2)

In the last display, the processes in parentheses are all locally bounded, and so are η̃, θ̃ and
ϑ̃. Therefore, there is no loss of generality to assume

(3.3) g0 ≡ g̃0 ≡ gη0 ≡ g̃
η
0 ≡ g

η̂
0 ≡ g̃

η̂
0 ≡ 0,

{
H̃, H̃η, H̃η̂ ∈ (0, 1

2) if H ∈ (0, 1
2),

η̃ ≡ θ̃ ≡ ϑ̃≡ 0 if H = 1
2 .

In addition, as it is usual when infill asymptotics are considered, Assumption CLT can be
localized (cf. [27, Lemma 4.4.9]). Therefore, there is no loss of generality if we assume the
following strengthened hypotheses.

ASSUMPTION CLT’. In addition to Assumption CLT, we have (3.3) and there is a deter-
ministic constant K ∈ (0,∞) such that

(3.4) sup
t∈[0,∞)

{
|at|+ |aηt |+ |a

η̂
t |+ |bt|+ |η̃t|+ |θ̃t|+ |ϑ̃t|+ |θt|+ |ϑt|

}
<K a.s.

In particular, all processes appearing in (2.1), (2.2) and (2.3) have uniformly bounded mo-
ments of all orders. In addition, for all p > 0, there is a constant Kp ∈ (0,∞) such that

(3.5) lim
h→0

sup
s,t∈[0,∞):|s−t|≤h

{
E[|at − as|p] +E[|bt − bs|p]

}
= 0

and

(3.6) sup
s,t∈[0,∞)

{
E[|η̃t − η̃s|p]1/p +E[|θ̃t − θ̃s|p]1/p +E[|ϑ̃t − ϑ̃s|p]1/p

}
≤Kp|t− s|H .

3.1. Main decomposition and approximations. Since the arguments can be applied com-
ponent by component, there is no loss of generality to assume d= 1 in this subsection. For
brevity, we also write `= `1, kn = k

(1)
n , θ = θ(1) and Ṽ n,`

t = Ṽ n,`,kn
t . In a first step, write

(3.7) ĉniδn,knδn = Jn1,i + Jn2,i,

where

Jn1,i =
1

knδn

kn−1∑
j=0

(
(δni+jx)2 −

∫ (i+j)δn

(i+j−1)δn

csds

)
,

Jn2,i =
1

knδn

kn−1∑
j=0

∫ (i+j)δn

(i+j−1)δn

csds=
1

knδn

∫ (i−1+kn)δn

(i−1)δn

csds=
C(i−1+kn)δn −C(i−1)δn

knδn
,

and Ct =
∫ t

0 csds=
∫ t

0 σ
2
sds is the integrated volatility. The decomposition (3.7) shows that

the spot volatility estimator ĉniδn,knδn is first and foremost an estimator of Jn2,i, a local average
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of spot volatility (with Jn1,i being the estimation error). With this decomposition, we have(
ĉn(i+kn)δn,knδn

− ĉniδn,knδn
)(
ĉn(i+(`+1)kn)δn,knδn

− ĉn(i+`kn)δn,knδn

)
= Zn,`1,i +Zn,`2,i +Zn,`3,i +Z ′n,`3,i ,

(3.8)

where

Zn,`1,i = (Jn1,i+kn − J
n
1,i)(J

n
1,i+(`+1)kn

− Jn1,i+`kn),

Zn,`2,i = (Jn2,i+kn − J
n
2,i)(J

n
2,i+(`+1)kn

− Jn2,i+`kn),

Zn,`3,i = (Jn1,i+kn − J
n
1,i)(J

n
2,i+(`+1)kn

− Jn2,i+`kn),

Z ′n,`3,i = (Jn2,i+kn − J
n
2,i)(J

n
1,i+(`+1)kn

− Jn1,i+`kn).

Correspondingly, we obtain the decomposition

(3.9) Ṽ n,`
t = Zn,`1 (t) +Zn,`2 (t) +Zn,`3 (t) +Z ′n,`3 (t),

where

Zn,`1|2 (t) =
(knδn)1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

(Jn1|2,i+kn − J
n
1|2,i)(J

n
1|2,i+(`+1)kn

− Jn1|2,i+`kn),

Zn,`3 (t) =
(knδn)1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

(Jn1,i+kn − J
n
1,i)(J

n
2,i+(`+1)kn

− Jn2,i+`kn),

Z ′n,`3 (t) =
(knδn)1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

(Jn2,i+kn − J
n
2,i)(J

n
1,i+(`+1)kn

− Jn1,i+`kn),

(3.10)

and 1 | 2 means that we can take either 1 or 2 (consistently for the whole line).
We can now give an informal argument why κ = 2H

2H+1 is the optimal window size in
our estimation procedure. Note that (knδn)−H(Jn2,i+kn − J

n
2,i) is a normalized second-order

increment of C over an interval of length knδn. Therefore, Zn,`2 (t) is nothing else but the
normalized second-order quadratic variation of C (computed with a lag `). By definition, C
is the integral of a fractional process. It is well known from [6, 7] that the normalized higher-
order quadratic variation of a fractional process, computed over a step size of knδn, converges
to a limit at rate (knδn)−1/2, for all H ∈ (0, 1

2 ]. Of course, C is not a fractional process but
rather its integral. Our analysis of Zn,`2 (t) below shows that the rate of convergence remains
unchanged. In other words, if we were able to observe Ct directly, we would have chosen
kn = 1, and the optimal rate of convergence would be δ−1/2

n .
But we do not observe Ct directly, which means that we have an estimation error of Ct in

the form of Jn1,i. By the integration by parts formula for semimartingales,

Jn1,i =
2

knδn

kn−1∑
j=0

∫ (i+j)δn

(i+j−1)δn

(xs − x(i+j−1)δn)dxs

=
2

knδn

∫ (i+kn−1)δn

(i−1)δn

(xs − x[s/δn]δn)dxs,

(3.11)
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which shows that Jn1,i is a term of order k−1/2
n , uniformly in i. Moreover, if we neglect the

drift in x (which, of course, is fine as we will see below), then Jn1,i is a martingale increment
with step size knδn, so Jn1,i+kn − J

n
1,i will be a martingale increment, too, just with step size

2knδn. Because ` ≥ 2, if we take the product with Jn1,i+(`+1)kn
− Jn1,i+`kn in Zn,`1 (t) and

apply integration by parts one more time, we only get martingale increments (with step size
O(knδn)) but no quadratic variation / drift part. Therefore, the sum over i in Zn,`1 (t) will be
of order OP((knδn)−1/2) and Zn,`1 (t) will be of order OP((knδn)1/2−2Hk−1

n ). Thus, contrary
to Zn2 (t), the error term Zn1 (t) is small if kn is large. Of course, this is expected, for the larger
the window size kn is, the better integrated volatility is approximated by realized variance.
Nonchalantly ignoring Zn,`3 and Z ′n,`3 for the moment, we obtain the optimal convergence
rate if κ is chosen such that (knδn)1/2 and (knδn)1/2−2Hk−1

n are of the same order. This
precisely gives κ= 2H

2H+1 and the optimal rate of convergence of δ−1/(4H+2)
n .

This informal argument clearly does not prove that δ−1/(4H+2)
n is the best possible rate.

But in our companion paper [13], we actually show that this is the case in parametric rough
volatility models. For now, let us make two more remarks before we return to the main line
of the proof. First, in the above argument, we have neglected Zn,`3 and Z ′n,`3 , which are mixed
terms and ought to be no worse than Zn,`1 and Zn,`2 in terms of rate. This is indeed true for the
fluctuations, but with the caveat that with the optimal κ, Zn,`3 comes with an asymptotic bias
term (given by (2.13)) that dominates the CLT if (and only if) H ≤ 1

4(
√

5− 1)≈ 0.3090.
Second, notice that the optimal rate of convergence of Ṽ n,`,kn

t (after removing the bias)
is δ−1/(4H+2)

n , which approaches δ−1/2
n as H ↓ 0 and δ−1/4

n as H ↑ 1
2 and is monotone in

between. The fact that the convergence rate is faster for small H compared to the semi-
martingale case H = 1

2 (see [40]) seems counter-intuitive since the spot volatility estimator
ĉnt,s should be less precise if c is rough. This is true, and if one decided to first estimate ct
and then extract H from variations of ct, the resulting estimator would definitely perform
poorly for small H . But there is no need to estimate ct: recall from the discussion above that
ĉniδn,knδn is mainly an estimator of Jn2,i = (knδn)−1(C(i−1+kn)δn − C(i−1)δn), an increment
of integrated volatility, which as we shall see below contains as much information about H
as an increment of ct. So the faster convergence rate of Ṽ n,`,kn

t for small H is really due to
the fact that the total error Zn,`1 (t) in pre-estimating Zn,`2 (t) is (knδn)1/2−2Hk−1

n and hence
smaller for small H for any given window size kn.

The following three propositions determine the main parts of Zn,`1 (t), Zn,`2 (t), Zn,`3 (t) and
Z ′n,`3 (t) that contribute to the CLT.

PROPOSITION 3.1. Let the assumptions be as in Theorem 2.1. Then for all κ ∈ [ 2H
2H+1 ,

1
2 ]

and integer sequences kn ∼ θδ−κn with θ > 0, the following convergence holds:

(knδn)−1/2(Zn,`1 (t)−Mn,`
1 (t))

L1

=⇒ 0,(3.12)

where using the notations yt =
∫ t

0 σsdWs and χ(t) = −1 for t ∈ [0, 1
2 ] and χ(t) = 1 for

t ∈ (1
2 ,1], we define

Mn,`
1 (t) =

4(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+2kn)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)dys

×
∫ (i−1+(`+2)kn)δn

(i+`kn−1)δn

χ( [s/δn]−i−`kn+1
2kn−1 )(ys − y[s/δn]δn)dys.

(3.13)
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If κ ∈ ( 2H
2H+1 ,

1
2 ], we further have

(knδn)−1/2Mn,`
1 (t)

L1

=⇒ 0.(3.14)

PROPOSITION 3.2. Under the assumptions of Theorem 2.1, we have for all κ ∈ [ 2H
2H+1 ,

1
2 ]

and integer sequences kn ∼ θδ−κn with θ > 0 that

(knδn)−1/2(Zn,`2 (t)− V `
t −M

n,`
2 (t))

L1

=⇒ 0,

where

Mn,`
2 (t) =

(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+(`+2)kn)δn

0

∫ r

0

{
∆2
knδnGH((i− 1)δn − r)

×∆2
knδnGH((i+ `kn − 1)δn − u) + ∆2

knδnGH((i+ `kn − 1)δn − r)(3.15)

×∆2
knδnGH((i− 1)δn − u)

}
ηudWuηrdWr

and

(3.16) GH(t) =
K−1
H

H + 1
2

t
H+1/2
+ .

PROPOSITION 3.3. Under the assumptions of Theorem 2.1, we have for all κ ∈ [ 2H
2H+1 ,

1
2 ]

and integer sequences kn ∼ θδ−κn with θ > 0 that

(knδn)−1/2(Zn,`3 (t)−An,`t −M
n,`
31 (t)−Mn,`

32 (t))
L1

=⇒ 0,

(knδn)−1/2(Z ′n,`3 (t)−M ′n,`3 (t))
L1

=⇒ 0,

where An,`t =An,`,knt and

Mn,`
31 (t) =

2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+2kn)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)

×
∫ s

0
∆2
knδnGH((i− 1 + `kn)δn − r)ηrdWrdys,

Mn,`
32 (t) =

2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+(`+2)kn)δn

0
∆2
knδnGH((i− 1 + `kn)δn − r)

×
∫ (i−1+2kn)δn∧r

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)dysηrdWr

and

M ′n,`3 (t) =
2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+(`+2)kn)δn

(i+`kn−1)δn

χ( [s/δn]−i−`kn+1
2kn−1 )

× (ys − y[s/δn]δn)dys

∫ (i−1+2kn)δn

0
∆2
knδnGH((i− 1)δn − r)ηrdWr.

(3.17)

If κ ∈ ( 2H
2H+1 ,

1
2 ], we also have (knδn)−1/2(Mn,`

31 (t) +Mn,`
32 (t) +M ′n,`3 (t))

L1

=⇒ 0.
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We now give an overview of the proof of Proposition 3.2, with details delegated to Sec-
tion A. Note that Zn,`2 (t) is the only term that contributes to the LLN and, furthermore, is the
only term that contributes to the CLT for any κ ∈ [ 2H

2H+1 ,
1
2 ]. The other three terms Zn,`1 (t),

Zn,`3 (t) and Z ′n,`3 (t) never contribute to the LLN and, unless κ = 2H
2H+1 , do not contribute

to the CLT, either. Also, the approximations we need to make for them are mostly similar to
those for Zn,`2 (t). This is why we postpone the whole proof of Propositions 3.1 and 3.3 to
Section B.

By (3.1), we have for any t≥ 0 that∫ t+knδn

t
csds= c0knδn +

∫ t+knδn

t
Asds+

∫ t+knδn

0
∆knδnGH(t− r)ηrdWr.

Consequently,

(3.18) Jn2,i+knδn − J
n
2,i =

1

knδn

∫ (i−1+kn)δn

(i−1)δn

(cs+knδn − cs)ds=
1

knδn
(Dn

1,i +Dn
2,i),

where

Dn
1,i =

∫ (i−1+2kn)δn

0
∆2
knδnGH((i− 1)δn − r)ηrdWr,

Dn
2,i =

∫ (i−1+kn)δn

(i−1)δn

(As+knδn −As)ds.
(3.19)

We can safely remove the drift part Dn
2,i:

LEMMA 3.4. Under Assumption CLT’, we have (knδn)−1/2(Zn,`2 (t) − Z̃n,`2 (t))
L1

=⇒ 0,
where

(3.20) Z̃n,`2 (t) = (knδn)−1−2H 1

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
1,iD

n
1,i+`kn .

Next, an application of the integration by parts formula shows that

(3.21) Z̃n,`2 (t) =Mn,`
21 (t) +Mn,`

22 (t) +Qn,`2 (t) =Mn,`
2 (t) +Qn,`2 (t),

where

Mn,`
21 (t) =

(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+2kn)δn

0
∆2
knδnGH((i− 1)δn − r)

×
∫ r

0
∆2
knδnGH((i+ `kn − 1)δn − u)ηudWuηrdWr,

Mn,`
22 (t) =

(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+(`+2)kn)δn

0
∆2
knδnGH((i+ `kn − 1)δn − r)

×
∫ r

0
∆2
knδnGH((i− 1)δn − u)ηudWuηrdWr,

Qn,`2 (t) =
(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+2kn)δn

0
∆2
knδnGH((i− 1)δn − r)

×∆2
knδnGH((i+ `kn − 1)δn − r)|ηr|2dr.



12

For the proof of Proposition 3.2, we only have to further consider Qn,`2 (t).
Interchanging summation and integration and factoring knδn out of ∆2

knδn
GH , we obtain

Qn,`2 (t) =
1

kn

∫ ([t/δn]−`kn)δn

0

[t/δn]−(`+2)kn+1∑
i=([r/δn]−2kn+2)∨1

∆2
1GH( i−1−r/δn

kn
)

×∆2
1GH( i−1+`kn−r/δn

kn
)|ηr|2dr.

(3.22)

Writing r/δn = [r/δn] + {r/δn} as the sum of its integer and fractional part and changing
the index i− 1− [r/δn] to i result in

Qn,`2 (t) =
1

kn

∫ ([t/δn]−`kn)δn

0

[t/δn]−[r/δn]−(`+2)kn∑
i=(1−2kn)∨(−[r/δn])

∆2
1GH( i−{r/δn}kn

)

×∆2
1GH( i+`kn−{r/δn}kn

)|ηr|2dr.

(3.23)

The next lemma shows that we can replace the lower bound in the summation by 1 − 2kn
and the upper bound by +∞.

LEMMA 3.5. Under Assumption CLT’, we have (knδn)−1/2(Qn,`2 (t) − Q̂n,`2 (t))
L1

=⇒ 0,
where

(3.24) Q̂n,`2 (t) =

∫ ([t/δn]−`kn)δn

0

1

kn

∞∑
i=1−2kn

∆2
1GH( i−{r/δn}kn

)∆2
1GH( i+`kn−{r/δn}kn

)|ηr|2dr.

Since {r/δn} ∈ [0,1), the sum over i is a Riemann sum that converges as kn→∞ to the
limit

∫∞
−2 ∆2

1GH(v)∆2
1GH(v+ `)dv. This integral is nothing else but ΦH

` defined in (2.12).

LEMMA 3.6. For any H ∈ (0, 1
2) and `≥ 2,

(3.25) ΦH
` =

∫ ∞
−2

∆2
1GH(v)∆2

1GH(v+ `)dv.

As an immediate consequence, we obtain Q̂n,`2 (t)
L1

=⇒ ΦH
`

∫ t
0 |ηr|

2dr = V `
t , the desired

LLN limit. There is only one problem: the convergence rate. Even for a smooth function
(which ∆2

1GH(v) is not), a Riemann sum converges to its limit only with rate kn, which
for small H and small κ (including the optimal κ= 2H

2H+1 ) is much slower than the needed
(knδn)−1/2. Nevertheless, we shall prove

LEMMA 3.7. Under Assumption CLT’, we have (knδn)−1/2(Q̂n,`2 (t)− V `
t )

L1

=⇒ 0.

This unexpected gain in convergence rate is only possible because we have a very special
Riemann sum and a very special process η in (3.24). To understand what is so particular
about the former, let us exploit the periodicity of the mapping u 7→ {u} and change variables
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a few times to rewrite

ΦH
` =

∞∑
i=1−2kn

∫ i

kn

i−1

kn

∆2
1GH(v)∆2

1GH(v+ `)dv

=
1

kn

∞∑
i=1−2kn

∫ 1

0
∆2

1GH( i−vkn )∆2
1GH( i−vkn + `)dv

=
1

kn

∞∑
i=1−2kn

δ−1
n

∫ ([r/δn]+1)δn

([r/δn])δn

∆2
1GH( i−{u/δn}kn

)∆2
1GH( i−{u/δn}kn

+ `)du,

(3.26)

which is valid for any r > 0 and n ∈N. Comparing the last line of the previous display with
(3.24), we realize that there is no need to study how fast the sum over i approaches its limit
since

Q̂n,`2 (t)− V `
t = Q̂n,`(t)−ΦH

`

∫ ([t/δn]−`kn)δn

0
|ηu|2du+OP(knδn)

=
1

kn

∞∑
i=1−2kn

∫ ([t/δn]−`kn)δn

0

(
∆2

1GH( i−{r/δn}kn
)∆2

1GH( i+`kn−{r/δn}kn
)

− δ−1
n

∫ ([r/δn]+1)δn

([r/δn])δn

∆2
1GH( i−{u/δn}kn

)∆2
1GH( i−{u/δn}kn

+ `)du

)
|ηr|2dr+OP(knδn).

What matters is therefore how fast the difference in parentheses goes to 0 (as long as we
obtain a bound that is an integrable function of i

kn
). With this in mind, we rewrite the last

line in the previous display as

[t/δn]−`kn∑
j=1

1

knδn

∞∑
i=1−2kn

∫ jδn

(j−1)δn

∫ jδn

(j−1)δn

{
∆2

1GH( i−{r/δn}kn
)∆2

1GH( i+`kn−{r/δn}kn
)

−∆2
1GH( i−{u/δn}kn

)∆2
1GH( i+`kn−{u/δn}kn

)

}
du|ηr|2dr+OP(knδn).

The dudr-double integral on the right-hand side can be split into an
∫ jδn

(j−1)

∫ r
(j−1)δn

-part and

an
∫ jδn

(j−1)

∫ jδn
r -part. By symmetry, the latter is equal to

−
∫ jδn

(j−1)δn

∫ r

(j−1)δn

{
∆2

1GH( i−{r/δn}kn
)∆2

1GH( i+`kn−{r/δn}kn
)

−∆2
1GH( i−{u/δn}kn

)∆2
1GH( i+`kn−{u/δn}kn

)

}
|ηu|2dudr,

which implies that

Q̂n,`2 (t)− V `
t

=

[t/δn]−`kn∑
j=1

1

knδn

∞∑
i=1−2kn

∫ jδn

(j−1)δn

∫ r

(j−1)δn

{
∆2

1GH( i−{r/δn}kn
)∆2

1GH( i+`kn−{r/δn}kn
)

−∆2
1GH( i−{u/δn}kn

)∆2
1GH( i+`kn−{u/δn}kn

)

}
(η2
r − η2

u + η̂2
r − η̂2

u)dudr+OP(knδn).

(3.27)
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In the last line, the regularity of η2 and η̂2 starts to play a role. If η2 and η̂2 were just any
H-Hölder regular function, the best bound we can hope for is δHn , which is clearly not enough
if H is small. However, this bound can be significantly improved if we have some structure
on η2 and η̃2. This is therefore the first (and only) place in this paper where the assumption
(2.3) is used. Leveraging (2.3) into a sufficiently good bound in (3.27) is still nontrivial, so
we complete the proof of Lemma 3.7 in Section A.

PROOF OF PROPOSITION 3.2. Proposition 3.2 follows by combining Lemma 3.4, Equa-
tion (3.21), Lemma 3.5 and Lemma 3.7.

3.2. Multivariate stable convergence in law. In a first step, we carry out a few approxi-
mations of Mn,`,kn

1 (t), Mn,`,kn
2 (t), Mn,`,kn

31 (t), Mn,`,kn
32 (t) and M ′n,`,kn3 (t). The proof can be

found in Section C.

PROPOSITION 3.8. Under the conditions of Theorem 2.1, we have

δ−(1−κ)/2
n Mn,`,kn

1 (t)≈
[t/δn]∑
j=1

ζn,j,`,kn1 , δ−(1−κ)/2
n Mn,`,kn

2 (t)≈
[t/δn]∑
j=1

ζn,j,`,kn2 ,

δ−(1−κ)/2
n (Mn,`,kn

31 (t) +Mn,`,kn
32 (t) +M ′n,`,kn3 (t))≈

[t/δn]∑
j=1

ζn,j,`,kn3 ,

(3.28)

where, with the notation ξ(t) = ((1− 3|t|)∨ (|t| − 1))1[−1,1](t),

(3.29)
ζn,j,`,kn1 = 8δ−(1−κ)/2

n (knδn)−1−2H

∫ jδn

(j−1)δn

σ4
(j−1)δn

∫ ([s/δn]−(`−2)kn)δn

([s/δn]−(`+2)kn+1)δn

ξ( [r/δn]−[s/δn]+`kn
2kn

)(Wr −W[r/δn]δn)dWr(Ws −W[s/δn]δn)dWs

and

ζn,j,`,kn2 = δ−(1−κ)/2
n

∫ jδn

(j−1)δn

∫ r

r−knδ1−εn

∫ ∞
−2

{
∆2

1GH(v)∆2
1GH(v+ r−u

knδn
+ `)

+ ∆2
1GH(v)∆2

1GH(v+ r−u
knδn
− `)

}
dvη(j−1)δndWuη(j−1)δndWr

(3.30)

and ζn,j,`,kn3 = ζn,j,`,kn31 + ζn,j,`,kn32 with

ζn,j,`,kn31 =−2(knδn)−1/2−Hδ−(1−κ)/2
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

×
∫ (j−1)δn

s−knδ1−εn

∫ 1

0

{
∆3

1GH( s−rknδn
+ `− u− 1)

+ ∆3
1GH( s−rknδn

− `− u− 1)
}
duη(j−1)δndWr(Ws −W(j−1)δn)dWs,

ζn,j,`,kn32 = − 2(knδn)−1/2−Hδ−(1−κ)/2
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

∫ (j−1)δn

r−(`+2)knδn∫ 1

0
∆3

1GH(`− r−s
knδn
− u− 1)du(Ws −W[s/δn]δn)dWsη(j−1)δndWr.

(3.31)
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Now let us define

(3.32) ζnt =

ζ
n,`1,k(1)

n

t
...

ζ
n,`d,k(d)

n

t

=

[t/δn]∑
j=1

ζ
n,j,`1,k(1)

n

1 ζ
n,j,`1,k(1)

n

2 ζ
n,j,`1,k(1)

n

3
...

...
...

ζ
n,j,`d,k(d)

n

1 ζ
n,j,`d,k(d)

n

2 ζ
n,j,`d,k(d)

n

3

 .

By (3.29), (3.30) and (3.31), we see that the jth matrix on the right-hand side of (3.32) is
Fjδn -measurable with a zero F(j−1)δn -conditional expectation. In conjunction with the fact
that

Zn ≈ ζn1, 1 = (1,1,1)T ,

which follows from Propositions 3.1, 3.2, 3.3 and 3.8, we can complete the proof of Theo-
rem 2.1 using a stable CLT for martingale arrays (see [27, Theorem 2.2.15]) upon showing
the following:

1. For any t > 0, m,m′ ∈ {1, . . . , d} and ν, ν ′ ∈ {1,2,3} such that ν 6= ν ′, we have

[t/δn]∑
j=1

E[ζn,j,`m,k
(m)
n

ν ζn,j,`m′ ,k
(m′)
n

ν | F(j−1)δn ]
P−→ γ`m,θm,`m′ ,θm′ν (H)Γν(t),(3.33)

[t/δn]∑
j=1

E[ζn,j,`m,k
(m)
n

ν ζ
n,j,`m′ ,k

(m′)
n

ν′ | F(j−1)δn ]
P−→ 0.(3.34)

2. For any m ∈ {1, . . . , d}, ν ∈ {1,2,3} and t > 0, we have

(3.35)
[t/δn]∑
j=1

E[(ζn,j,`m,k
(m)
n

ν )4 | F(j−1)δn ]
P−→ 0.

3. If N ∈ {W,Ŵ} or N is a bounded martingale on (Ω,F ,F,P) that is orthogonal in the
martingale sense to both W and Ŵ , then

(3.36)
[t/δn]∑
j=1

E[ζn,j,`m,k
(m)
n

ν (Njδn −N(j−1)δn) | F(j−1)δn ]
P−→ 0.

The proof of these three properties will be given in Section C. This completes the proof of
Theorem 2.1.

4. Debiasing and rate-optimal inference for H . There are two main challenges in
deriving a rate-optimal estimator ofH on the basis of Theorem 2.1: first, ifH is small, Ṽ n,kn,`

t
has a nonnegligible bias that dominates the CLT fluctuations; and second, the optimal rate
to be achieved is δ−1/(4H+2)

n and therefore depends on the unknown roughness parameter H
itself.

In order to account for the asymptotic bias, our strategy is to consider multiple window
sizes kn and combine the resulting Ṽ n,`,kn

t ’s in a very specific way that cancels the bias terms
up to a negligible contribution. For M ∈N, let us introduce the Vandermonde matrix

(4.1) VM =


1 1 1 · · · 1
1 2−1 3−1 · · · M−1

1 2−2 3−2 · · · M−2

...
...

...
. . .

...
1 2−(M−1) 3−(M−1) · · · M−(M−1)

 ,
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which has an inverse V −1
M by a standard result from linear algebra. Thus, we can define

(4.2) w̃(M) = V −1
M eM , eM = (0, . . . ,0,1)T , w(M) =

w̃(M)

|w̃(M)|
,

so that w(M) is the normalized last column of V −1
M . The following proposition shows that a

very specific linear combination of Ṽ n,`,mkn
t for different m’s removes the dominating part

of the bias. While Theorem 2.1 only requires `≥ 2, we have to impose `≥ 3 from now on.

PROPOSITION 4.1. Suppose that the conditions of Theorem 2.1 are satisfied with H ∈
(0, 1

2 ] and that kn ∼ θδ−κn for some θ > 0 and κ ∈ [ 2H
2H+1 ,

1
2 ]. Furthermore, assume that `≥ 3.

Defining

(4.3) M =M(H) = [1
2 −H + 1

4H ] + 1,

we have that

(4.4)
M∑
m=1

w(M)mm
1/2+H Ṽ n,`,mkn

t − V `
t

M∑
m=1

w(M)mm
1/2+H =OP((knδn)1/2).

Of course, the left-hand side of (4.4) multiplied by (knδn)−1/2 satisfies a CLT, but since
we do not need this in the following, we only prove the simpler version (4.4).

PROOF OF PROPOSITION 4.1. By Theorem 2.1, it suffices to show that

(4.5)
M∑
m=1

w(M)mm
1/2+HAn,`,mknt = oP((knδn)1/2),

where An,`,knt is defined in (2.13). For ` ≥ 3, the function v 7→ ∆3
1GH(` − 1 − i

kn
+ v) is

smooth on [−1
2 ,0],with derivatives (∆3

1GH)(j)(`− 1− i
kn

+ v) that are uniformly bounded
in v ∈ [−1

2 ,0], i, kn and j = 0, . . . ,M . Thus, by (2.13) and Taylor’s theorem,

An,`,knt =−2(knδn)−1/2−H
M−1∑
j=0

1

j!

∫ t

0

1

kn

kn−1∑
i=0

(∆3
1GH)(j)(`− 1− i

kn
)
(
−{u/δn}kn

)j
× (yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du+OP(k−1/2−H−M

n ).

(4.6)

As the reader can verify, by our definition of M in (4.3), we have that k−1/2−H−M
n =

o((knδn)1/2).
Next, we recognize that the sum over i is a Riemann sum approximation of the integral∫ 1

0 (∆3
1GH)(j)(` − 1 − v)dv. By the Euler–Maclaurin formula (see e.g., [31, Theorem 1]),

there are finite numbers ξ`j,j′ such that

1

kn

kn−1∑
i=0

(∆3
1GH)(j)(`− 1− i

kn
) =

M−1∑
j′=0

ξ`j,j′k
−j′
n +O(k−Mn ).

Inserting this back into (4.6), we can ignore the O(k−Mn )-term as before. In fact, we only
have to keep those terms for which j + j′ ≤M − 1. Thus, letting

Ξn,`p (t) =−2δ−1/2−H
n

M−1∑
j,j′=0

1{j+j′=p}
ξ`j,j′

j!

×
∫ t

0
(−{u/δn})j(yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du,
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we have that

An,`,knt = k−1/2−H
n

M−1∑
p=0

Ξn,`p (t)k−pn + oP((knδn)1/2).

Note that Ξn,`p (t) depends on δn but not on kn. Therefore, applying the previous identity to
mkn for m= 1, . . . ,M , we arrive at the following systems of equations:

(4.7) m1/2+HAn,`,mknt =

M−1∑
p=0

m−pΞn,`p (t)k−1/2−H−p
n + oP((knδn)1/2), m= 1, . . . ,M.

Thus, introducing

An,`,knt = (11/2+HAn,`,knt , . . . ,M1/2+HAn,`,Mkn
t )T ,

Ξn,`(t) = (Ξn,`0 (t)k−1/2−H−0
n , . . . ,Ξn,`M−1(t)k−1/2−H−(M−1)

n )T ,

we can rewrite (4.7) as

An,`,knt = V T
MΞn,`(t) + oP((knδn)1/2),

where VM is the Vandermonde matrix (4.1). Thus, by the definition of w(M) (see (4.2)),
M∑
m=1

w(M)mm
1/2+HAn,`,mknt =w(M)TAn,`,knt

= |w̃(M)|−1eTM (V −1
M )TV T

MΞn,`(t) + oP((knδn)1/2)

= |w̃(M)|−1Ξn,`M−1(t)k−1/2−H−(M−1)
n + oP((knδn)1/2).

Since Ξn,`M−1(t) =OP(1), (4.5) follows from our choice of M .

We now explain how to implement this debiasing procedure in practice. For the remaining
part of this section, we assume that

(4.8)
∫ t

0
(η2
s + η̂2

s)ds > 0 a.s.

(or, equivalently, all forthcoming statements are valid without (4.8) but in restriction to the
set {

∫ t
0 (η2

s + η̂2
s)ds > 0}). Define

(4.9)
V̂ n,`,kn
t = δn

[t/δn]−(`+2)kn+1∑
i=1

(ĉn(i+kn)δn,knδn
− ĉniδn,knδn)

× (ĉn(i+(`+1)kn)δn,knδn
− ĉn(i+`kn)δn,knδn

)

for ` ≥ 3 and kn ∈ N, which clearly satisfies V̂ n,`,kn
t = (knδn)2H Ṽ n,`,kn

t but in contrast to
Ṽ n,`,kn
t is actually a statistic since it does not depend on the unknown H . We construct a first

pilot estimator of H by fixing two lags `1, `2 ≥ 3 and then defining

(4.10) H̃n = ϕ−1

(
V̂ n,`1,k̃n
t

V̂ n,`2,k̃n
t

)
,

where ϕ :H 7→ΦH
`1
/ΦH

`2
is assumed to be a diffeomorphism and

(4.11) k̃n = [δ−1/2
n ].
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This choice of k̃n has the advantage that it makes H̃n a consistent estimator of H , which
furthermore satisfies a bias-free central limit theorem regardless of the value of H ∈ (0, 1

2).
On the downside, its rate is poor if H is small. In the following, we therefore propose an
iterative approach to improve the rate, which at the same time retains the bias-free property
of the resulting estimators. To this end, let

H= {H(j) = 1
4(
√

4j2 − 4j + 5− 2j + 1) : j ∈N}

= {0.3090,0.1514,0.0963,0.0700, . . .},
(4.12)

which is precisely the set of values of H for which 1
2 −H −

1
4H (as it appears in (4.3)) is an

integer. Therefore, if H(j) <H ≤H(j−1) for j ∈ N (where H(0) = 1
2 ), then M = j. Using

the pilot estimator H̃n, we now define

(4.13) M̂n =
[

1
2 − H̃n + 1

4H̃n
+ δ1/4

n log δ−1
n

]
+ 1

as an estimator of the number M from (4.3). Since H̃n is a consistent estimator of H and
δ

1/4
n log δ−1

n → 0, if H /∈H, we have

(4.14) lim
n→∞

P(M̂n =M) = 1.

If H ∈H, then we still have 1
2 − H̃n + 1

4H̃n
→ 1

2 −H + 1
4H in probability, but since the limit

is an integer, after rounding, [1
2 − H̃n + 1

4H̃n
] will typically jump between two consecutive

integers as n increases. To avoid that, we have included δ1/4
n log δ−1

n in the definition of M̂n,
which is asymptotically bigger than the δ1/4

n -fluctuations of 1
2 − H̃n + 1

4H̃n
and therefore

guarantees that we have P(M̂n =M)→ 1 for H ∈H as well.
Having defined M̂n, we now set H̄(0)

n = H̃n and define consecutively

(4.15) H̄(j)
n = ϕ−1

(∑j
m=1w(j)mm

1/2−H̄(j−1)
n V̂

n,`1,mk̄(j)
n

t∑j
m=1w(j)mm1/2−H̄(j−1)

n V̂ n,`2,mk̄
(j)
n

t

)
, k̄(j)

n = [δ−2H(j)/(2H(j)+1)
n ],

for j = 1, . . . , M̂n − 1 and let

(4.16) H̄n = H̄(M̂n−1)
n .

PROPOSITION 4.2. Suppose that the conditions of Theorem 2.1 are satisfied with H ∈
(0, 1

2) and assume (4.8). Further fix two lags `1, `2 ≥ 3 such that the function ϕ : H 7→
ΦH
`1
/ΦH

`2
, where ΦH

` is defined in (2.12), is a diffeomorphism on (0, 1
2). For any j ∈ N0, if

H ≤H(j), then

(4.17) H̄(j)
n −H =OP((k̄(j)

n δn)1/2).

PROOF. We prove the claim by induction, and since the base case j = 0 corresponds to
the CLT of H̃n, we can consider j ≥ 1 and assume that (4.17) is true for j − 1. We rewrite

H̄(j)
n = ϕ−1

(∑j
m=1w(j)mm

1/2−H̄(j−1)
n +2H(mk̄

(j)
n δn)−2H V̂

n,`1,mk̄(j)
n

t∑j
m=1w(j)mm1/2−H̄(j−1)

n +2H(mk̄
(j)
n δn)−2H V̂ n,`2,mk̄

(j)
n

t

)

= ϕ−1

(∑j
m=1w(j)mm

1/2−H̄(j−1)
n +2H Ṽ

n,`1,mk̄(j)
n

t∑j
m=1w(j)mm1/2−H̄(j−1)

n +2H Ṽ n,`2,mk̄
(j)
n

t

)(4.18)
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and recall (2.11), (2.13) and that ϕ is a diffeomorphism. Therefore, defining ψ(x1, x2) =

ϕ−1(x1/x2), we can use the mean-value theorem to find (ξn,1t , ξn,2t ) satisfying

ξn,ιt
P−→

j∑
m=1

w(j)mm
1/2+HΦH

`ι

for ι= 1,2 such that

H̄(j)
n −H =

∑
ι=1,2

∂xιψ(ξn,1t , ξn,2t )

j∑
m=1

w(j)mm
1/2−H̄(j−1)

n +2HAn,`ι,mk̄
(j)
n

t

+
∑
ι=1,2

∂xιψ(ξn,1t , ξn,2t )

j∑
m=1

w(j)mm
1/2−H̄(j−1)

n +2H

× (Ṽ
n,`ι,mk̄(j)

n

t −An,`ι,mk̄
(j)
n

t − V `ι
t ).

(4.19)

By Theorem 2.1, Ṽ n,`ι,mk̄(j)
n

t − An,`ι,mk̄
(j)
n

t − V `ι
t = OP((k̄

(j)
n δn)1/2). It remains to show

that the first term on the right-hand side of (4.19) is OP((k̄
(j)
n δn)1/2). Let us fix ι. Since

∂xιψ(ξn,1t , ξn,2t ) converges in probability, we only have to show that for any `≥ 3,

(4.20)
j∑

m=1

w(j)mm
1/2−H̄(j−1)

n +2HAn,`,mk̄
(j)
n

t =OP((k̄(j)
n δn)1/2).

By Lemma B.3, An,`,mk̄
(j)
n

t = OP((k̄
(j)
n )−1/2−H) = oP(δ

H(j)/(1+2H(j))
n ). At the same time,

for any m = 1, . . . , j, we have that m1/2−H̄(j−1)
n +2H − m1/2+H = OP((k̄

(j−1)
n δn)1/2) =

OP(δ
1/(4H(j−1)+2)
n ) by the induction hypothesis. So if we replace m1/2−H̄(j−1)

n +2H by
m1/2+H in (4.20), the overall error is oP(δ

H(j)/(1+2H(j))+1/(4H(j−1)+2)
n ), which can be shown

to be oP(δ
1/(4H(j)+2)
n ) by using the explicit formula for H(j) from (4.12). Now once we have

replacedm1/2−H̄(j−1)
n +2H bym1/2+H , (4.20) follows from Proposition 4.1 (or, more directly,

from (4.5)).

By (4.14) and the previous proposition, H̄n is our best estimator so far: it is bias-free
and satisfies a CLT with rate δ1/(4H(j−1)+2)

n , where j ∈ N is such that H(j) <H ≤H(j−1).
Unless H ∈ H, this rate is close but still not equal to the optimal one, which is δ1/(4H+2)

n .
As alluded to before, the remaining obstacle to rate efficiency is the fact that the optimal
window size kn should be of order δ−2H/(2H+1)

n , which depends on the parameter H to be
estimated. While H̄n is not rate-optimal in general, it is nevertheless consistent for H , so one
might be tempted to use ǩn = [δ

−2H̄n/(2H̄n+1)
n ] as a new window size and to construct a new

estimator similarly to (4.15) with ǩn substituted for k̃n and M̂n substituted for j. While this
is a natural approach, there is a pitfall inherent in any such plug-in estimator: the sequence
ǩn is random as it depends on the data through H̄n. As Theorem 2.1 was shown with a
deterministic window size, it cannot be applied with ǩn.

In order tackle this problem, we use the randomization approach of [38] that relies on the
following—seemingly paradoxical—idea: Add more randomness to ǩn in order to reduce
its randomness! To see what this means and why it works, consider an auxiliary probability
space (Ω′,F ′,P′) equipped with a uniform random variable U . As usual, we form the product
space

Ω̂ = Ω×Ω′, F̂ =F ⊗F ′, P̂ = P⊗ P′
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and extend all random variables on (Ω,F ,P) to the new space in the canonical fashion. To
simplify the notation, we keep writing P in the following, but whenever U appears, of course,
it stands for P̂. In addition, we choose two sequences qn ∼ q/ log δ−1

n for some q > 0 and
rn→∞ such that δ−1/4

n /rn→∞ and log δ−1
n /rn→ 0. We then define the oracle sequence

(4.21) k̂n = [δ−2H̄U
n /(2H̄

U
n +1)

n ],

where

(4.22) H̄U
n =

[rn(H̄n + qn) +U ] + 1

rn

is a randomized version of H̄n. Note that H̄U
n depends both on the data (through H̄n) and

on U , which is what we mean by “adding randomness.” The success of the randomization
approach pivots on the following oracle property, proved in [38, Lemma 9]:

(4.23) lim
n→∞

P(k̂n = kUn ) = 1,

where

(4.24) kUn = [δ−2HU
n /(2H

U
n +1)

n ], HU
n =

[rn(H + qn) +U ] + 1

rn
.

Note that kUn only depends on U but no longer on F , in particular, no longer on the data. This
is what we mean by “reducing randomness.” In conclusion, what the randomization approach
really does it to exchange data-dependent randomness for data-independent randomness in
the sequence k̂n. And this clearly pays off: conditionally on U , the sequence kUn is deter-
ministic, to which we can apply all limit theorems obtained so far. Thus, our rate-optimal
estimator of H is

(4.25) Ĥn = ϕ−1

(∑M̂n

m=1w(M̂n)mm
1/2−H̄n V̂ n,`1,mk̂n

t∑M̂n

m=1w(M̂n)mm1/2−H̄n V̂ n,`2,mk̂n
t

)
,

whose asymptotic behavior is given in the following theorem, our main result.

THEOREM 4.3. Grant Assumption CLT and suppose that qn ∼ q/ log δ−1
n for some q > 0

and rn is an increasing sequence such that δ−1/4
n /rn→∞ and log δ−1

n /rn→ 0. Moreover,
fix two lags `1, `2 ≥ 3 such that the function ϕ :H 7→ΦH

`1
/ΦH

`2
, where ΦH

` is defined in (2.12),
is a diffeomorphism on (0, 1

2). Assuming (4.8) and using the notations

(4.26) β(H) = e2q/(2H+1)2

and

w(M,H) = (w(M,H)1, . . . ,w(M,H)M )T ,

w(M,H)m =
w(M)mm

1/2+H∑M
m=1w(M)mm1/2+H

(4.27)

and

(4.28) γ`,`
′

ν (H) = (γ`,β(H)m,`′,β(H)m′

ν (H))Mm,m′=1 ∈RM×M , ν = 1,2,3, `, `′ ≥ 3,

we have for any H ∈ (0, 1
2) that

δ−1/(4H+2)
n (Ĥn −H)

st−→N

(
0,

(
ϕ(H)

ϕ′(H)

)2 ∑
ι,ι′=1,2

(−1)ι+ι
′

ΦH
`ι

ΦH
`ι′

3∑
ν=1

[w(M,H)Tγ`ι,`ι′ν (H)w(M,H)]Γν(t)

)
,

(4.29)
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where M =M(H) is the number from (4.3) and the limit in the previous line is independent
of F ′.

PROOF. By (4.14) and (4.23), it suffices to prove (4.29) for

(4.30) H ′n = ϕ−1

(∑M
m=1w(M)mm

1/2−H̄n V̂
n,`1,mkUn
t∑M

m=1w(M)mm1/2−H̄n V̂
n,`2,mkUn
t

)
instead of Ĥn. And by the definition of stable convergence in law, it suffices to do so condi-
tionally on U because U does not appear in the limit. Next, similarly to (4.18) and (4.19), we
can write

H ′n = ϕ−1

(∑M
m=1w(M)mm

1/2−H̄n+2H Ṽ
n,`1,mkUn
t∑M

m=1w(M)mm1/2−H̄n+2H Ṽ
n,`2,mkUn
t

)
and find (ζn,1t , ζn,2t ) such that

δ−1/(4H+2)
n (H ′n −H)

= δ−1/(4H+2)
n

∑
ι=1,2

∂xιψ(ζn,1t , ζn,2t )

M∑
m=1

w(M)mm
1/2−H̄n+2HAn,`ι,mk

U
n

t

+
∑
ι=1,2

∂xιψ(ζn,1t , ζn,2t )

M∑
m=1

w(M)mm
1/2−H̄n+2H

× δ−1/(4H+2)
n (Ṽ

n,`ι,mkUn
t −An,`ι,mk

U
n

t − V `ι
t ).

(4.31)

Conditionally on U , the sequence kUn is deterministic. Furthermore, since qn ∼ q log δ−1
n and

log δ−1
n /rn→ 0, we have kUn /δ

−2H/(2H+1)
n → e2q/(2H+1)2 . By Theorem 2.1, we know that

(δ
−1/(4H+2)
n (Ṽ

n,`ι,mkUn
t −An,`ι,mk

U
n

t − V `ι
t ))ι=1,2,m=1,...,M satisfies a joint CLT, so a tedious

but entirely straightforward variance computation shows that the second line of the previous
display converges stably to the right-hand side of (4.29). Analogously to how we proved
(4.20), we can first use Proposition 4.2 to replace m1/2−H̄n+2H by m1/2+H and then apply
Proposition 4.1 to show that the first term on the right-hand side of (4.31) is oP(δ

1/(4H+2)
n ),

completing the proof.

In order to make Theorems 2.1 and 4.3 feasible, we need to find consistent estimators of
Γ1(t), Γ2(t) and Γ3(t) from (2.16). The following estimators are adapted from [3, Theo-
rem 8.12].

PROPOSITION 4.4. Let K̂n = k̂n[δ−λn ], where k̂n is defined in (4.21) and λ ∈ (0, 1
2).

Moreover, define

δ′ni X =XiK̂nδn
−X(i−1)K̂nδn

,

δ′ni ĉ=
1

k̂nδn
(Ĉn

(1+iK̂n)δn,k̂nδn
− Ĉn

(1+(i−1)K̂n)δn,k̂nδn
)

(4.32)
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and

Γ̂n1 (t) =
1

9δ3
n

[t/(K̂nδn)]−1∑
i=1

(δ′ni X)4(δ′ni+1X)4,

Γ̂n2 (t) =
(K̂nδn)1−4Ĥn

3

[t/(K̂nδn)]−2∑
i=1

(δ′ni ĉ)
4,

Γ̂n3 (t) =
(K̂nδn)−1−2Ĥn

3

[t/(K̂nδn)]−2∑
i=1

(δ′ni ĉ)
2(δ′ni+1X)4.

(4.33)

Then under the assumptions of Theorem 4.3, we have Γ̂nν
P

=⇒ Γν for each ν = 1,2,3.

PROOF. Let δ′ni c̃ and Γ̃nν (t), ν = 1,2,3, be defined in the same way as the corresponding
quantities in (4.32) and (4.33) except that k̂n and K̂n are replaced by some deterministic se-
quences kn ∼ θδ−2H/(2H+1)

n and Kn ∼Θδ
−2H/(2H+1)−λ
n with θ,Θ> 0. Similarly to (4.23),

we have P(K̂n =KU
n ) = 1, where KU

n ∼Θ′δ
−2H/(2H+1)−λ
n for some Θ′ > 0 (and almost all

realizations of U ). Thus, it suffices to show

Γ̃n1
L1

=⇒ Γ1, Γ̃n2
L1

=⇒ Γ2, Γ̃n3
L1

=⇒ Γ3,

assuming Assumption CLT’. The first convergence is a consequence of [27, Theorem 8.4.1].
For the remaining two, we make the following observation: by (3.7), we have that

δ′ni c̃− δ′ni c= Jn1,1+iKn − J
n
1,1+(i−1)Kn

+
1

knδn

∫ (iKn+kn)δn

iKnδn

(cs − ciKnδn)ds

+
1

knδn

∫ ((i−1)Kn+kn)δn

(i−1)Knδn

(cs − c(i−1)Knδn)ds.

It is not hard to see from the definition that Jni is of size k−1/2
n , uniformly in i. Moreover, the

last two terms on the right-hand side of the previous display are of size (knδn)H , uniformly
in i. Therefore, if we define Γn2 (t) and Γn3 (t) in the same way as Γ̃n2 (t) and Γ̃n3 (t) but with
δ′ni c̃ replaced by δ′ni c, then

E
[

sup
t∈[0,T ]

{
|Γ̃n2 (t)− Γn2 (t)|+ |Γ̃n3 (t)− Γn3 (t)|

}]
. (K̂nδn)−H(k−1/2

n + (knδn)H)→ 0

as n→∞. Consequently, it remains to show Γn2
L1

=⇒ Γ2 and Γn3
L1

=⇒ Γ3. The first convergence
was shown in [6, Theorem 3], while the second is easily obtained from standard techniques
of high-frequency statistics (involving drift removal, localization of σ, η and η̂, and a LLN in
the case where X is a Brownian motion and c is a fractional Brownian motion) and the fact
that E[(WH

1 )2(W2 −W1)4] = E[(ŴH
1 )2(W2 −W1)4] = 3.

This could have been the end of our construction of a rate-optimal and feasible estimator
of H if it was not for a crucial detail that we have overlooked so far. It turns out that all esti-
mators considered in this section (including Ĥn) break down if H = 1

2 , that is, if volatility is
not rough but just a semimartingale. This is because Φ

1/2
` = 0 for any `≥ 3, which implies

by Theorem 2.1 that (Ṽ n,`1,k̃n
t , Ṽ n,`2,k̃n

t ) for `1, `2 ≥ 3 converges in law to a bivariate mixed
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normal distribution. In particular, the ratio Ṽ n,`1,k̃n
t /Ṽ n,`2,k̃n

t and thus the estimator H̃n con-
verges in distribution (not in probability) to a random variable with a density. In other words,
naïvely applying H̃n if H = 1

2 can output any value in the interval (0, 1
2) just by chance!

There are at least two ways of remedying this problem. One possibility is to choose `2 ∈
{0,1} in (4.10), which ensures that Φ

1/2
`2
6= 0. However, in this case, Zn,`21 (t) will have a

dominating bias term that has to be removed (even for the LLN; see [3, Section 8.3]). But
more importantly, the latent bias term An,`,knt from (2.13) (which will also have a slightly
different form) involves the function v 7→ ∆3

1(`2 − 1 − v), which is no longer smooth in
v ∈ [0, 3

2 ]. This has the consequence that the debiasing procedure from Proposition 4.1 has
to be modified. We propose a different, quicker, solution. Loosely speaking, we first use the
limit theory of Ṽ n,`2,k̃n

t to test whether H = 1
2 and only use Ĥn if H = 1

2 is rejected. More
precisely, we define

(4.34) Hn = Ĥn1Rn(V̂ n,`2,k̃n
t ) +

1

2
1R\Rn(V̂ n,`2,k̃n

t ),

where

(4.35) Rn =

{
x ∈R : |x|> δ3/4

n log δ−1
n

( 3∑
ν=1

γ`2,1,`2,1ν (1
2)Γ̂nν (t)

)1/2}
and Γ̂nν (t) is defined in (4.33).

THEOREM 4.5. Under the assumptions of Theorem 4.3 and Proposition 4.4, we have
lim
n→∞

P(Hn = Ĥn) = 1 if H ∈ (0, 1
2),

lim
n→∞

P(Hn = 1
2) = 1 if H = 1

2 .

In particular, if H ∈ (0, 1
2), (4.29) continues to hold with Hn instead of Ĥn.

PROOF. If H = 1
2 , note that by Theorem 2.1, δ−3/4

n V̂ n,`2,k̃n
t converges stably in law to a

centered normal with conditional variance
∑3

ν=1 γ
`2,1,`2,1
ν (1

2)Γν(t). Thus, by Proposition 4.4,

Vn = δ
−3/4
n V̂ n,`2,k̃n

t /(
∑3

ν=1 γ
`2,1,`2,1
ν (1

2)Γ̂ν(t))1/2 d−→ N(0,1), so P(Hn = 1
2) = P(|Vn| ≤

log δ−1
n )→ 1. Similarly, if H ∈ (0, 1

2), we know from Theorem 2.1 that

V ′n = δ1/2−H
n Vn

(∑3
ν=1 γ

`2,1,`2,1
ν (1

2)Γ̂ν(t)
)1/2

(γ`2,1,`2,12 (H)Γ̂2(t))1/2

d−→N(0,1),

which shows that

P(Hn = Ĥn) = P
(
|V ′n|> δ1/2−H

n log δ−1
n

(∑3
ν=1 γ

`2,1,`2,1
ν (1

2)Γ̂ν(t)
)1/2

(γ`2,1,`2,12 (H)Γ̂2(t))1/2

)
→ 1.

APPENDIX A: DETAILS OF THE PROOF OF PROPOSITION 3.2

We start with a lemma on the regularity of the process A from (3.2).

LEMMA A.1. For any T > 0, we have that

E[(At+h −At)2]1/2 +E[(Aηt+h −A
η
t )

2]1/2 +E[(Aη̂t+h −A
η̂
t )

2]1/2

.
[
(1 + t−H)h(2H+1/2)∧1

]
∧ hH ,
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with a constant that is uniform for t ∈ [0, T ], h > 0 and i= 0, . . . ,L. If H = 1
2 , the previous

bound can be improved to

E[(At+h −At)2]1/2 +E[(Aηt+h −A
η
t )

2]1/2 +E[(Aη̂t+h −A
η̂
t )

2]1/2 . h.

PROOF. The statement is obvious for H = 1
2 , so we assume H ∈ (0, 1

2) in the follow-
ing. We only consider increments of At; the bounds for Aη and Aη̂ can be derived in
the same way. Since the first term in the definition of At is differentiable almost surely
with L2-bounded derivative, we only need to consider the second term. To avoid intro-
ducing additional notation, we assume that g′0 ≡ g̃′0 ≡ 0 such that At = (gH̃ ∗ η̃)(t), where
(f ∗ g)(t) =

∫
R f(t− s)g(s)ds denotes the convolution of two integrable functions. Note that

we used the convention η̃(i)
s = 0 for s < 0. Since

E[(At+h −At)2]1/2 ≤
∫ t

0
E[(η̃t+h−s − η̃t−s)2]1/2gH̃(s)ds+

∫ t+h

t
E[(η̃t+h−s)

2]1/2gH̃(s)ds

. hH + [(t+ h)H̃+1/2 − tH̃+1/2] . hH + hH̃+1/2 . hH ,

we have shown the second upper bound. To get the first one, observe that

E[(∆2
hAt)

2]1/2 = E[(∆2
h(gH̃ ∗ η̃)(t))2]1/2 = E[(∆hgH̃ ∗∆hη̃)(t))2]1/2

≤
∫ t+h

−h
|gH̃(s+ h)− gH̃(s)||E[(η̃t+h−s − η̃t−s)2]1/2ds.

The last integral splits into three parts, according to whether s ∈ (−h,0), s ∈ (t, t + h) or
s ∈ (0, t). Bounding them by∫ 0

−h
gH̃(s+ h)E[(η̃t+h−s − η̃t−s)2]1/2ds. hH

∫ 0

−h
gH̃(s+ h)ds. hH+H̃+1/2,∫ t+h

t
|gH̃(s+ h)− gH̃(s)|E[(η̃t+h−s)

2]1/2ds.
∫ t+h

t
|gH̃(s+ h)− gH̃(s)|ds

. hH̃+1/2 ∧ tH̃−3/2h2 ≤ t−HhH+H̃+1/2,∫ t

0
|gH̃(s+ h)− gH̃(s)|E[(η̃t+h−s − η̃t−s)2]1/2ds≤ hH

∫ t

0
|gH̃(s+ h)− gH̃(s)|ds

. hH+H̃+1/2,

we obtain the assertion of the lemma from [35, Proposition 2].

PROOF OF LEMMA 3.4. We start withH ∈ (0, 1
2). Consider the first [(kn/δn)1/2δεn] terms

in the sum over i in the definition of Zn,`2 (t) in (3.10). Since E[|cs+knδn − cs|2]1/2 .
(knδn)H , their contribution to Zn,`2 (t), multiplied by the rate (knδn)−1/2, is of order at most
(knδn)1/2−2Hk−1

n (kn/δn)1/2δεn(knδn)2H = δεn and hence asymptotically negligible. Simi-
larly, because

(A.1) ∆2
1GH(u) . uH−3/2 ∧ 1,

we have that

E[|Dn
1,i|2]1/2 . (knδn)1/2+H

(∫ (i−1+2kn)δn

0
(∆2

1GH( i−1−r/δn
kn

))2dr

)1/2

. (knδn)1+H

(∫ i−1

kn

−2
(∆2

1GH(u))2du

)1/2

. (knδn)1+H ,

(A.2)
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uniformly in i, so the first [(kn/δn)1/2δεn] terms in the sum over i in (3.20) are negligible as
well. Furthermore, by Lemma A.1,

E[|Dn
2,i|2]1/2 . (knδn)(2H+1/2)∧1

∫ (i−1+kn)δn

(i−1)δn

s−Hds

. (knδn)1+(2H+1/2)∧1(knδn)−H

(A.3)

uniformly for i≥ [(kn/δn)1/2δεn], it follows from the mean-value theorem and the Cauchy–
Schwarz inequality that the difference Zn,`2 (t) − Z̃n,`2 (t), with summation restricted to i ≥
[(kn/δn)1/2δεn], is of order (knδn)−1−2H(knδn)−1(knδn)1+H(knδn)1−H+(2H+1/2)∧1, which
is o((knδn)1/2) for H ∈ (0, 1

2) if ε > 0 is small enough.
If H = 1

2 , we note that

Dn
1,i =

∫ (i−1+2kn)δn

(i−1)δn

∆2
knδnG1/2((i− 1)δn − r)ηrdWr =OP((knδn)3/2)

and Dn
2,i =OP((knδn)2). Thus, decomposing

(knδn)−1/2(Zn,`2 (t)− Z̃n,`2 (t)) = (knδn)−2 1

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
1,iD

n
2,i+`kn

+ (knδn)−2 1

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
2,iD

n
1,i+`kn

+ (knδn)−2 1

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
2,iD

n
2,i+`kn ,

we easily notice that the last term is OP(knδn) and therefore negligible. Let us consider the
first expression on the right-hand side; the second one can be treated similarly. Bounding term
by term, we notice that it is of order OP(1). This means two things: to show convergence to
zero, we need to find a better way of bounding this expression. But at the same time, we are
allowed to make any modification that leads to an oP(1) error. In particular, thanks to (3.5),
we may replace Dn

2,i+`kn
by (recall that we may assume At =

∫ t
0 asds)

D̃n
2,i+`kn =

∫ (i−1+(`+1)kn)δn

(i−1+`kn)δn

∫ s+knδn

s
a(i−1)δndrds,

which has the advantage that it is F(i−1)δn -measurable. Therefore, the product Dn
1,iD

n
2,i+`kn

is F(i−1+2kn)δn -measurable with zero F(i−1)δn -conditional expectation. By a martingale size
estimate (see [11, Appendix A]), it follows that

E
[

sup
t∈[0,T ]

∣∣∣∣(knδn)−2 1

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
1,iD̃

n
2,i+`kn

∣∣∣∣]
. (knδn)−2 1

kn
(kn/δn)1/2(knδn)3/2(knδn)2 = knδn→ 0.

PROOF OF LEMMA 3.5. We first remove ∨(−[r/δn]) from the lower bound of i. Since
this is only relevant for r ≤ 2knδn and the two ∆2

1GH -terms are uniformly bounded for
i ∈ {1− 2kn, . . . ,0}, this removal only incurs an error of order k−1

n (knδn)kn = knδn, which
is smaller than the desired convergence rate of (knδn)1/2.
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It remains to replace the upper bound of the sum by +∞. In order to justify this, observe
that

(A.4) |∆2
1GH( i−{r/δn}kn

)|.
(
i
kn

)H−3/2 ∧ 1 (and . 1{i≤2kn+1} if H = 1
2),

uniformly in n, i and r. If H ∈ (0, 1
2), we now choose some p > 1 + (1− κ)/(4κ(1−H)).

For any κ ∈ [ 2H
2H+1 ,

1
2 ], if p is sufficiently close to the lower bound, we still have kpnδn→ 0.

So if we consider the two cases t− r ≥ kpnδn and t− r ≤ kpnδn separately, we observe in the
former case that

E
[∣∣∣∣ 1

kn

∫ t−kpnδn

0

∞∑
i=[t/δn]−[r/δn]−(`+2)kn+1

∆2
1GH( i−{r/δn}kn

)∆2
1GH( i+`kn−{r/δn}kn

)|ηr|2dr
∣∣∣∣]

.
1

kn

∞∑
i=kpn/2

(
i

kn

)2H−3 ∫ t−kpnδn

0
E[|ηr|2]dr . k(2−2H)(1−p)

n = o((knδn)1/2)

(A.5)

by our choice of p. If t − r ≤ kpnδn, we pick some ε > 0 to be specified later and, for the
moment, small enough such that we have the bound

|∆2
1GH( i−{r/δn}kn

)∆2
1GH( i+`kn−{r/δn}kn

)| ≤
(
i
kn

)2H−3 ∧ 1≤
(
i
kn

)−1−ε ∧ 1.

Then

E
[∣∣∣∣ 1

kn

∫ ([t/δn]−`kn)δn

t−kpnδn

∞∑
i=[t/δn]−[r/δn]−(`+2)kn+1

∆2
1GH( i−{r/δn}kn

)

×∆2
1GH( i+`kn−{r/δn}kn

)|ηr|2dr
∣∣∣∣]. 1

kn
k1+ε
n

∫ ([t/δn]−`kn)δn

t−kpnδn
E[|ηr|2]dr . kε+pn δn.

(A.6)

The reader can verify that for anyH ∈ (0, 1
2), if p is close enough to 1+(1−κ)/(4κ(1−H))

and ε is small enough, then kε+pn δn = o((knδn)1/2).
IfH = 1

2 , we choose p ∈ (1, 3
2). By (A.4), the left-hand side of (A.5) is simply zero because

p > 1. Similarly, the summation in (A.6) only involves O(kn) many terms, so the left-hand
side of (A.6) is O(kpnδn), which is (knδn)1/2 since p < 3

2 .

PROOF OF LEMMA 3.6. If H = 1
2 , we have ∆2

1G1/2(v) = 0 for v /∈ (−2,0). Thus,

Φ
1/2
` = 0 for all `≥ 2. For H ∈ (0, 1

2), it is possible to compute ΦH
` using properties of frac-

tional Brownian motion and integration by parts. But in order to prepare for upcoming (and
more involved) calculations, we show how to obtain (3.25) using Fourier methods. An advan-
tage of this approach is that it yields a formula for arbitrary ` ∈ R (not just ` ∈ {2,3, . . .}),
without the need to differentiate between multiple cases. First notice that there is no harm
to extend the integral in (3.25) to −∞, because ∆2

1GH(v) = 0 for all v <−2. Therefore, by
Parseval’s formula,∫ ∞

−2
∆2

1GH(v)∆2
1GH(v+ `)dv =

1

2π

∫
R
F [∆2

1GH ](ξ)F [∆2
1GH ](ξ)e−i`ξdξ,

where F [ϕ](ξ) =
∫
Rϕ(x)e−ixξdξ denotes the Fourier transform of an L2-function (which

can be extended to the space of tempered distributions) and z denotes the complex conjugate
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of z ∈ C. We need a few definitions and facts regarding Fourier transforms, which can be
found in [25, Section 3.2 and Example 7.1.17]: for α ∈C \ {0,−1,−2, . . .},

(A.7)
xα± = (±x)α1{±x>0}, F [xα±](ξ) = Γ(α+ 1)e∓iπ(α+1)/2(ξ ∓ i0)−α−1,

(x± i0)α = xα+ + e±iπαxα−, F [(x± i0)α](ξ) = 2πe±iπα/2Γ(−α)−1ξ−α−1
± .

In particular, still for α ∈C \ {0,−1,−2, . . .},

F [|x|α](ξ) = Γ(α+ 1)(e−iπ(α+1)/2(ξ − i0)−α−1 + eiπ(α+1)/2(ξ + i0)−α−1)

= 2Γ(α+ 1) cos(π(α+1)
2 )|ξ|−α−1.

(A.8)

Moreover, by the fact that F [ϕ(·+h)](ξ) = eihξF [ϕ](ξ), the operator ∆2
1 in the time domain

corresponds to multiplication with e2iξ−2eiξ + 1 in the Fourier domain. Therefore, recalling
(3.16), we have the right-hand side of (3.25) equals

K−2
H Γ(H + 3

2)2

2π(H + 1
2)2

∫
R
e−i`ξe−

1

2
iπ(H+ 3

2
)(ξ − i0)−H−3/2e

1

2
iπ(H+ 3

2
)(ξ + i0)−H−3/2

× (e2iξ − 2eiξ + 1)(e−2iξ − 2e−iξ + 1)dξ.

Observe that

(e2iξ − 2eiξ + 1)(e−2iξ − 2e−iξ + 1) = e2iξ − 4eiξ + 6− 4e−iξ + e−2iξ = (e
1

2
ix − e−

1

2
ix)4,

which corresponds to δ4
1 in the time domain. Moreover, by (A.7),

(ξ − i0)−α(ξ + i0)−α = ξ−2α
+ + eiπαξ−α− ξ−α+ + ξ−α+ e−iπαξ−α− + ξ−2α

−

= ξ−2α
+ + ξ−2α

− = |ξ|−2α.
(A.9)

Therefore, using the last formula in (A.7) and with the convention that δ4
1 acts on the variable

`, we obtain

ΦH
` =

K−2
H Γ(H + 3

2)2

2π(H + 1
2)2

∫
R
e−i`ξ(ξ − i0)−H−3/2(ξ + i0)−H−3/2(e

1

2
ix − e−

1

2
ix)4dξ

=
Γ(H + 1

2)2Γ(−2H − 2)

2πK2
H

δ4
1(eiπ(H+1)(`− i0)2H+2 + e−iπ(H+1)(`+ i0)2H+2)

=
Γ(H + 1

2)2Γ(−2H − 2)

2πK2
H

(eiπ(H+1) + e−iπ(H+1))δ4
1(`2H+2

+ + `2H+2
− )

=
2 cos(π(H + 1))Γ(H + 1

2)2Γ(−2H − 2)

2πK2
H

δ4
1 |`|2H+2.

Using (2.7) and properties of the Gamma function, one can show that the factor in front of
δ4

1 |`|2H+2 is equal to 1/(2(2H + 1)(2H + 2)), proving (3.25).

PROOF OF LEMMA 3.7. Recall (3.1). In a first step, we show that the contributions of Aη

and Aη̂ to (3.27) are negligible at a rate of (knδn)1/2. We only consider Aη , as our arguments
apply to Aη̂ analogously. If j ≤ (kn/δn)1/2, then

∑[(kn/δn)1/2]
j=1

1
knδn

∫ jδn
(j−1)δn

∫ r
(j−1)δn

is of

size (δn/kn)1/2, the sum over i of the terms in {· · · } can be bounded by a multiple of k1+ε
n ,

where ε > 0 can be as small as we want (cf. (A.6)), andAηr−Aηu is of size δHn by Lemma A.1.
So in total, the contribution of terms with j ≤ (kn/δn)1/2 is of size (knδn)1/2kεnδ

H
n , which
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is o((knδn)1/2) if ε is sufficiently small. If j > (kn/δn)1/2, then u ≥ (knδn)1/2 and there-
fore, by similar arguments, the contribution of the terms with j > (kn/δn)1/2 is of size
k−1
n k1+ε

n (knδn)−H/2δ
(2H+1/2)∧1
n , which is o((knδn)1/2) if ε is small.

It remains to analyze the expressions
∑[t/δn]−`kn

j=1 ξnj and
∑[t/δn]−`kn

j=1 ξ̂nj , where

ξnj =
1

knδn

∞∑
i=1−2kn

∫ jδn

(j−1)δn

∫ r

(j−1)δn

{
∆2

1GH( i−{r/δn}kn
)∆2

1GH( i+`kn−{r/δn}kn
)

−∆2
1GH( i−{u/δn}kn

)∆2
1GH( i+`kn−{u/δn}kn

)

}∫ r

0
∆r−ugHη(u− s)θsdW̄sdudr

(A.10)

and ξ̂nj is defined in the same way but with ϑ instead of θ. Clearly, it suffices to consider ξnj .
To this end, if Hη ∈ (0, 1

2), we consider a sequence of numbers 0 = λ0 < λ1 < · · · < λQ <

λQ+1 =∞, whose values shall be determined at a later stage, and define λ(q)
n = [δ

−λq
n ] for

all q = 0, . . . ,Q + 1. In particular, 1 = λ
(0)
n � λ

(1)
n � · · · � λ

(Q)
n < λ

(Q+1)
n =∞. Accord-

ingly, we can define ξn,qj by the same formula as in (A.10), except we replace
∫ r

0 · · ·dW̄s by∫ (j+1−λ(q)
n )δn∧r

(j+1−λ(q+1)
n )δn

· · ·dW̄s. Then clearly

[t/δn]−`kn∑
j=1

ξnj =

Q∑
q=0

[t/δn]−`kn∑
j=1

ξn,qj .

Since u, r ∈ ((j − 1)δn, jδn), we have by the mean-value theorem (for q = 1, . . . ,Q) and a
change of variables (for q = 0) that

∫ (j+1−λ(q)
n )δn∧r

(j+1−λ(q+1)
n )δn

(∆r−ugHη(u− s))2ds.


δ2
n

∫ (j+1−λ(q)
n )δn

(j+1−λ(q+1)
n )δn

(u− s)2Hη−3ds if q ≥ 1,

δ2Hη
n

∫ r/δn

j+1−λ(1)
n

(∆ r−u
knδn

gHη(
u
δn
− s))2ds if q = 0.

. δ2Hη
n (λ(q)

n )2Hη−2,
(A.11)

which, in combination with previous arguments for the contribution of Aη , shows that

(A.12) E[(ξn,qj )2]1/2 . kεnδ
1+Hη
n (λ(q)

n )Hη−1

uniformly in n and j, with arbitrarily small ε > 0. Next, observe that ξnj is Fjδn -measurable
with E[ξnj | F(j+1−λ(q+1)

n )δn
] = 0. Therefore, using a martingale size estimate for q =

0, . . . ,Q− 1 and a standard size estimate for q =Q (see [11, Appendix A]), we obtain

E
[

sup
t∈[0,T ]

([t/δn]−`kn∑
j=1

ξn,qj

)2]1/2

.

{
(λ

(q+1)
n /δn)1/2kεnδ

1+Hη
n (λ

(q)
n )Hη−1 if q ≤Q− 1,

kεnδ
Hη
n (λ

(Q)
n )Hη−1 if q =Q.

(A.13)

We want this to go to zero faster than (knδn)1/2 for all q = 0, . . . ,Q. Because we can replace
ε by 1

2ε in the last display, it suffices to start with λ0 = 0 and then define λ1, λ2, . . . iteratively
using the relation

− 1
2λq+1 + (1

2 − ε)κ+Hη + (1−Hη)λq = 0

⇐⇒ λq+1 = (1− 2ε)κ+ 2Hη + 2(1−Hη)λq.
(A.14)
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The solution to this recurrence equation is

(A.15) λq =
((1− 2ε)κ+ 2Hη)((2− 2Hη)

q − 1)

1− 2Hη
,

from which we see that λq →∞ if we keep iterating. Let Q be the smallest Q such that
λQ, computed from the formula (A.15), is bigger than (1−κ

2 + κε−Hη)/(1−Hη), which is
smaller than 1 if ε is small. Replacing λQ by a number between this threshold and 1 (if λQ
from (A.15) exceeds 1), we obtain E[supt∈[0,T ](

∑[t/δn]−`kn
j=1 ξn,qj )2]1/2 = o((knδn)1/2) for all

q = 0, . . . ,Q, proving the lemma for Hη ∈ (0, 1
2).

If Hη = 1
2 , things are much simpler. Indeed, in this case,

∫ r
0 ∆r−ugHη(u − s)θsdW̄s =∫ r

u θsdW̄s, so (knδn)−1/2
∑[t/δn]−`kn

j=1 ξnj = OP(δ
−1/4
n δ−1

n (knδn)−1knδ
2
nδ

1/2
n ) = OP(δ

1/4
n ).

APPENDIX B: PROOF OF PROPOSITIONS 3.1 AND 3.3

PROOF OF PROPOSITION 3.3. The proposition follows from Lemmas B.1–B.3.

LEMMA B.1. Recall (3.19) and that yt =
∫ t

0 σsdWs. Under Assumption CLT’, we have

(knδn)−1/2(Zn,`3 (t)− Z̃n,`3 (t))
L1

=⇒ 0 and (knδn)−1/2(Z ′n,`3 (t)−M ′n,`3 (t))
L1

=⇒ 0 as n→∞,
where

Z̃n,`3 (t) =
2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
1,i+`kn

×
∫ (i−1+2kn)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)dys.

(B.1)

PROOF. We only consider the approximation of Zn,`3 (t); the arguments for Z ′n,`3 (t) are
analogous. Using the equality xy − x0y0 = (x− x0)y0 + x(y − y0), we can decompose the
difference Zn,`3 (t)− Z̃n,`3 (t) =En1 (t) +En2 (t) +En3 (t), where

En1 (t) =
2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
1,i+`kn

×
∫ (i−1+2kn)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )

∫ s

[s/δn]δn

brdrdys,

En2 (t) =
2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
1,i+`kn

×
∫ (i−1+2kn)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(xs − x[s/δn]δn)bsds,

En3 (t) =
2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

Dn
2,i+`kn

×
∫ (i−1+2kn)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(xs − x[s/δn]δn)dxs.
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The first term is the easiest to deal with. The dys-integral is of order δn(knδn)1/2, while
Dn

1,i+`kn
is of order (knδn)1+H by (A.2). Hence,

En1 (t) =OP(knδn)−2−2Hδn(knδn)1/2(knδn)1+H = o((knδn)1/2)

for any κ≥ 2H
2H+1 .

Next, consider En3 (t) and denote the ds-integral by Y n
i . Clearly, we have E[(Y n

i )2]1/2 .

δ
1/2
n (knδn)1/2, uniformly in n and i. Interchanging summation over i with the integral defin-

ing Dn
2,i+`kn

in (3.19), we have that

En3 (t) =
2(knδn)−1−2H

kn

∫ ([t/δn]−kn)δn

`knδn

[s/δn]−`kn+1∑
i=[s/δn]−(`+1)kn+2

Y n
i (As+knδn −As)ds.

The sum ranges over O(kn) many terms only. Thus, by Lemma A.1,

E
[

sup
t∈[0,T ]

|En3 (t)|
]
. (knδn)−1−2Hδ1/2

n (knδn)1/2(knδn)(2H+1/2)∧1

∫ T

0
(1 + s−H)ds.

Distinguishing the two cases H ≤ 1
4 and H ∈ (1

4 ,
1
2), one can verify that the last line is

o((knδn)1/2) for all κ ∈ [ 2H
2H+1 ,

1
2 ] and H ∈ (0, 1

2). We postpone the analysis of En3 (t) if
H = 1

2 to the end of this proof.
The term En2 (t) is more complicated. Let us first try a power-counting argument as be-

fore: the dys-integral is of order δ1/2
n knδn, while Dn

1,i+`kn
= OP((knδn)1+H), so En2 (t) =

OP((knδn)−2−2Hδ
1/2
n knδn(knδn)1+H), which as the reader can check, is oP((knδn)1/2 if

κ > 2H
2H+1 but unfortunately only OP((knδn)1/2) if κ = 2H

2H+1 . While this simple approach
fails for the boundary case κ= 2H

2H+1 , it shows one important point: when trying to improve
the bound, we are allowed to make any modifications that generate an asymptotically vanish-
ing error (the speed can be arbitrarily slow). For instance, we may replace x by y and, thanks
to (3.5), bs by b(i−1)δn in the definition of En2 (t), so that we only have to analyze

2(knδn)−1−2H

kn

[t/δn]−(`+2)kn+1∑
i=1

b(i−1)δn

∫ (i−1+2kn)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)ds

×
∫ (i−1+(`+2)kn)δn

0
∆2
knδnGH((i+ `kn − 1)δn − r)(ηrdWr + η̂rdŴr).

(B.2)

Since ys − y[s/δn]δn =
∫ s

[s/δn]δn
σrdWr , we can use the stochastic Fubini theorem to rewrite

the ds-integral above as∫ (i−1+2kn)δn

(i−1)δn

∫ (r+δn)∧(i−1+2kn)δn

r
χ( [s/δn]−i+1

2kn−1 )(ys − y[s/δn]δn)dsσrdWr.

We do not really need the explicit form of the new ds-integral, so let us denote it by ψnr and
only remark that E[supr∈[0,T ]|ψnr |p]1/p . δ

3/2
n for all p > 0. Using integration by parts, we

can now write (B.2) as En21(t) +En22(t) +En23(t), where

En21(t) = (knδn)−1−2H 2

kn

[t/δn]−(`+2)kn+1∑
i=1

b(i−1)δn

∫ (i−1+2kn)δn

(i−1)δn

ψnr σr

×
∫ r

0
∆2
knδnGH((i+ `kn − 1)δn − u)(ηudWu + η̂udŴu)dWr,
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En22(t) = (knδn)−1−2H 2

kn

[t/δn]−(`+2)kn+1∑
i=1

b(i−1)δn

×
∫ (i−1+(`+2)kn)δn

(i−1)δn

∆2
knδnGH((i+ `kn − 1)δn − r)

×
∫ r

(i−1)δn

ψnuσudWu(ηrdWr + η̂rdŴr),

En23(t) = (knδn)−1−2H 2

kn

[t/δn]−(`+2)kn+1∑
i=1

b(i−1)δn

×
∫ (i−1+2kn)δn

(i−1)δn

∆2
knδnGH((i+ `kn − 1)δn − r)ψnr σrηrdr.

Since

(B.3)
∫ (i−1+2kn)δn

(i−1)δn

|∆2
knδnGH((i+`kn−1)δn−r)|dr = (knδn)H+3/2

∫ `

`−2
|∆2

1GH(r)|dr,

we have that En23(t) = OP((knδn)−2−2H(knδn)H+3/2δ
3/2
n ) = oP((knδn)1/2) for all κ ≥

2H
2H+1 . For both En21(t) and En22(t), note that the ith term is F(i−1+(`+2)kn)δn -measurable
with zero F(i−1)δn -conditional expectation. Moreover, using (A.2), we have that each sum-

mand is of order (knδn)1+H(knδn)1/2δ
3/2
n . We can therefore apply a martingale size estimate

(see [11, Appendix A]) to both terms and obtain

(B.4) E
[

sup
t∈[0,T ]

|En21(t)+En22(t)|
]
. (knδn)−1−2Hk−1

n (kn/δn)1/2(knδn)1+H(knδn)1/2δ3/2
n ,

which is o((knδn)1/2).
Lastly, let us come back to En3 (t) if H = 1

2 . As in the case of En2 (t), bounding term
by term leads to an OP((knδn)1/2) estimate, which is just not enough at the considered
rate. But we are allowed to modify En3 (t) in the following way at no cost: we replace σ
(which appears in y) by σ(i−1)δn and ar (which appears in As+knδn −As, which in turn ap-
pears in Dn

2,i+`kn
) by a(i−1)δn . Once these changes are made, the ith term in En3 (t) will be

F(i−1+2kn)δn -measurable with zero F(i−1)δn -conditional expectation, so we can conclude by
a martingale size estimate.

Next, using integration by parts, we have that

Z̃n,`3 (t) =Mn,`
31 (t) +Mn,`

32 (t) +Qn,`3 (t),

where

Qn,`3 (t) = (knδn)−1−2H 2

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i−1+2kn)δn

(i−1)δn

∆2
knδnGH((i− 1 + `kn)δn − u)

× χ( [u/δn]−i+1
2kn−1 )(yu − y[u/δn]δn)σuηudu.

LEMMA B.2. Under Assumption CLT’, if κ > 2H
2H+1 , then Mn,`

31 +Mn,`
32 +M ′n,`3

L1

=⇒ 0.



32

PROOF. By (A.2), the ith term in the summation in Mn,`
31 (t), Mn,`

32 (t) and M ′n,`3 (t) is of
order (knδn)1+H(knδn)1/2δ

1/2
n . Therefore, by a martingale size argument, very similarly to

how we obtained (B.4), it follows that

E
[

sup
t∈[0,T ]

|Mn,`
31 (t) +Mn,`

32 (t) +M ′n,`3 (t)|
]

. (knδn)−1−2Hk−1
n (kn/δn)1/2(knδn)1+H(knδn)1/2δ1/2

n ,

which is o((knδn)1/2) if (and only if) κ > 2H
2H+1 .

LEMMA B.3. Under Assumption CLT’, we have (knδn)−1/2(Qn,`3 (t) − An,`,knt )
L1

=⇒ 0

for any ` ≥ 2, where An,`,knt is defined in (2.13). In addition, we have that An,`,knt =

OP(k
−1/2−H
n ). In particular, if κ > 1

2+2H , then (knδn)−1/2An,`,kn L1

=⇒ 0. The last condition
is satisfied with κ= 2H

2H+1 if and only if H > 1
4(
√

5− 1)≈ 0.3090.

PROOF. In a first step, we decompose Qn,`3 (t) =Qn,`31 (t) +Qn,`32 (t), where

Qn,`31 (t) = 2(knδn)−1−2H 1

kn

[t/δn]−(`+2)kn+1∑
i=1

2kn−1∑
j=0

χ( j
2kn−1)

×
∫ (i+j)δn

(i−1+j)δn

∆2
knδnGH((i− 1 + `kn)δn − u)

× (yu − y(i+j−1)δn)(σuηu − σ(i+j−1)δnη(i+j−1)δn)du,

Qn,`32 (t) = 2(knδn)−1−2H 1

kn

[t/δn]−(`+2)kn+1∑
i=1

2kn−1∑
j=0

χ( j
2kn−1)

×
∫ (i+j)δn

(i−1+j)δn

∆2
knδnGH((i− 1 + `kn)δn − u)

× (yu − y(i+j−1)δn)σ(i−1+j)δnη(i−1+j)δndu.

(B.5)

Let us consider Qn,`32 (t) first and interchange the sums over i and j. For every fixed j, we
observe that the ith term is F(i+j)δn -measurable with vanishing F(i+j−1)δn -conditional ex-
pectation. Moreover, similarly to (B.3),∫ (i+j)δn

(i−1+j)δn

|∆2
knδnGH((i+ `kn − 1)δn − u)|du= (knδn)H+3/2

∫ `− j

kn

`− j+1

kn

|∆2
1GH(u)|du

.
(knδn)H+3/2

kn
.

Therefore, for every j, the sum over i is a martingale sum, which yields

E
[

sup
t∈[0,T ]

|Qn,`32 (t)|
]
. (knδn)−1−2H (knδn)H+3/2

kn
δ−1/2
n δ1/2

n = o((knδn)1/2)

for all κ≥ 2H
2H+1 .
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Consequently, we only have to consider Qn,`31 (t) further, which can be rewritten as

Qn,`31 (t) = 2(knδn)−1/2−H 1

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i+2kn−1)δn

(i−1)δn

χ( [u/δn]−i+1
2kn−1 )

×∆2
1GH( i−1−u/δn

kn
+ `)(yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du

= 2(knδn)−1/2−H 1

kn

∫ ([t/δn]−`kn)δn

0

([u/δn]+1)∧([t/δn]−(`+2)kn+1)∑
i=([u/δn]−2kn+2)∨1

χ( [u/δn]−i+1
2kn−1 )

×∆2
1GH( i−1−u/δn

kn
+ `)(yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du

= 2(knδn)−1/2−H 1

kn

∫ ([t/δn]−`kn)δn

0

0∧([t/δn]−[u/δn]−(`+2)kn)∑
i=(1−2kn)∨(−[u/δn])

χ( −i
2kn−1)

×∆2
1GH( i−{u/δn}kn

+ `)(yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du.

Similarly to how we proved Lemma 3.5, one can use (A.4) to show that (knδn)−1/2(Qn,`31 (t)−
Q̃n,`31 (t))

L1

=⇒ 0, where

Q̃n,`31 (t) = 2(knδn)−1/2−H 1

kn

∫ ([t/δn]−`kn)δn

0

2kn−1∑
i=0

χ( i
2kn−1)∆2

1GH(−i−{u/δn}kn
+ `)

× (yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du.

In fact, we can further change the upper bound of the integral and replace Q̃n,`31 (t) by

Q̂n,`31 (t) = 2(knδn)−1/2−H 1

kn

∫ t

0

2kn−1∑
i=0

χ( i
2kn−1)∆2

1GH(−i−{u/δn}kn
+ `)

× (yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du.

(B.6)

Indeed, by (A.4), E[supt∈[0,T ]|Q̃
n,`
31 (t)− Q̂n,`31 (t)|] . (knδn)1/2−Hδ

1/2+H
n = o((knδn)1/2).

Now recall the definition of χ(t), which is −1 for t < 1
2 and 1 for t≥ 1

2 . Therefore,

Q̂n,`31 (t) =
2(knδn)−1/2−H

kn

∫ t

0

kn−1∑
i=0

{
∆2

1GH(−i−{u/δn}kn
+ `− 1)

−∆2
1GH(−i−{u/δn}kn

+ `)
}

(yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du

= − 2(knδn)−1/2−H

kn

∫ t

0

kn−1∑
i=0

∆3
1GH(`− 1− i+{u/δn}

kn
)

× (yu − y[u/δn]δn)(σuηu − σ[u/δn]δnη[u/δn]δn)du,

which shows that Q̂n,`31 (t) is nothing else but the bias term An,`,knt . This establishes the first
claim of the lemma. The second follows from (2.13) by observing that ∆3

1GH is a bounded
function (and, of course, that yu − y[u/δn]δn and σuηu − σ[u/δn]δnη[u/δn]δn are of order δ1/2

n

and δHn , respectively). The last two assertions are obvious.
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PROOF OF PROPOSITION 3.1. By (3.11), we have that

Jn1,i =
2

knδn

∫ (i+kn−1)δn

(i−1)δn

(ys − y[s/δn]δn)dys +
2

knδn

∫ (i+kn−1)δn

(i−1)δn

(ys − y[s/δn]δn)bsds

+
2

knδn

∫ (i+kn−1)δn

(i−1)δn

∫ s

[s/δn]δn

brdrdys,

which implies

Jn1,i+kn − J
n
1,i =

2

knδn

∫ (i+2kn−1)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)dys

+
2

knδn

∫ (i+2kn−1)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)bsds

+
2

knδn

∫ (i+2kn−1)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )

∫ s

[s/δn]δn

brdrdys.

Clearly, the last term is OP(
√
δn/kn), while Jn1,i+kn − Jn1,i = OP(

√
1/kn). Therefore,

the contribution of the former to Zn,`1 (t) is OP((knδn)1−2H(knδn)−1k
−1/2
n (δn/kn)1/2) =

OP(k−1−2H
n δ

1/2−2H
n ), which, as the reader may verify, is oP((knδn)1/2) for all κ ∈ [ 2H

2H+1 ,
1
2 ].

Therefore,

(knδn)−1/2(Zn,`1 (t)−Mn,`
1 (t))≈ (knδn)−1/2(Fn1 (t) + Fn2 (t)),

where

Fn1 (t) = 4(knδn)−1−2H 1

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i+2kn−1)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)dys

×
∫ (i+(`+2)kn−1)δn

(i+`kn−1)δn

χ( [s/δn]−i−`kn+1
2kn−1 )(ys − y[s/δn]δn)bsds,

Fn2 (t) = 4(knδn)−1−2H 1

kn

[t/δn]−(`+2)kn+1∑
i=1

∫ (i+(`+2)kn−1)δn

(i+`kn−1)δn

χ( [s/δn]−i−`kn+1
2kn−1 )

× (ys − y[s/δn]δn)dys

∫ (i+2kn−1)δn

(i−1)δn

χ( [s/δn]−i+1
2kn−1 )(ys − y[s/δn]δn)bsds.

Because ` ≥ 2, the ith term in Fn2 (t) is F(i+(`+2)kn−1)δn -measurable with a vanishing
F(i+`kn−1)δn -conditional expectation. Thus, by a martingale size estimate (see [11, Ap-
pendix A]) and the bounds found in the previous paragraph, we obtain that

E
[

sup
t∈[0,T ]

|Fn2 (t)|
]
. (knδn)−1−2Hk−1

n

√
kn/δn(knδ

2
n)1/2knδ

3/2
n = (knδn)−2Hδn

= o((knδn)1/2)

for all κ ∈ [ 2H
2H+1 ,

1
2 ]. Regarding Fn1 (t), observe that if we just applied a term-by-term size

estimate, we would obtain (knδn)−1/2Fn1 (t) = oP(1) if κ > 2H
2H+1 but only OP(1) if κ =

2H
2H+1 . To handle the latter case, note that we can replace bs in Fn1 (t) by b(i−1)δn (by the
preceding arguments and (3.5), the error is oP((knδn)1/2)). After doing so, the ith in Fn1 (t)
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will have a zero F(i+`kn−1)δn -conditional expectation, so applying another martingale size
estimate yields Fn1 (t) = oP((knδn)1/2).

It remains to prove the last statement of the proposition. Because ` ≥ 2, it is easy to see
that the ith term in (3.13) is F(i−1+(`+2)kn)δn -measurable while having a zero F(i−1+`kn)δn -
conditional mean. By yet another martingale size estimate, it follows that

E
[

sup
t∈[0,T ]

|Mn,`
1 (t)|

]
. (knδn)−1−2Hk−1

n

√
kn/δnknδ

2
n = o((knδn)1/2)

for κ > 2H
2H+1 .

APPENDIX C: DETAILS FOR SECTION 3.2

PROOF OF PROPOSITION 3.8. Let us start with Mn,`,kn
2 (t). Interchanging summation

over i with the dWr-integral in (3.15) and breaking the latter into small pieces of length
δn, we can rewrite δ−(1−κ)/2

n Mn,`,kn
2 (t) =

∑[t/δn]
j=1 ζ̃n,j,`,kn2 , where

ζ̃n,j,`,kn2 =
δ
−(1−κ)/2
n (knδn)−1−2H

kn

∫ jδn

(j−1)δn

∫ r

0

[t/δn]−(`+2)kn+1∑
i=([r/δn]−(`+2)kn+2)∨1

×
{

∆2
knδnGH((i− 1)δn − r)∆2

knδnGH((i+ `kn − 1)δn − u)

+ ∆2
knδnGH((i+ `kn − 1)δn − r)∆2

knδnGH((i− 1)δn − u)
}
ηudWuηrdWr

= δ−(1−κ)/2
n

∫ jδn

(j−1)δn

∫ r

0

1

kn

(
[t/δn]−[r/δn]−(`+2)kn∑

i=(1−(`+2)kn)∨(−[r/δn])

∆2
1GH( i−{r/δn}kn

)

×∆2
1GH( i−{r/δn}kn

+ r−u
knδn

+ `) +

[t/δn]−[r/δn]−2kn∑
i=(1−2kn)∨(`kn−[r/δn])

∆2
1GH( i−{r/δn}kn

)

×∆2
1GH( i−{r/δn}kn

+ r−u
knδn
− `)

)
ηudWuηrdWr.

(C.1)

Let us bound the pth moment of ζ̃n,j,`,kn2 for p ≥ 2 and draw some conclusions. By the
Burkholder–Davis–Gundy inequality and similar steps to (3.22) and (3.23), we have that

E[|ζ̃n,j,`,kn2 |p] . δ−(1−κ)p/2
n

(∫ jδn

(j−1)δn

∫ r

0

(
1

kn

∞∑
i=1−2kn

{
∆2

1GH( i−{r/δn}kn
)

×∆2
1GH( i−{r/δn}kn

+ r−u
knδn

+ `) + ∆2
1GH( i−{r/δn}kn

)

×∆2
1GH( i−{r/δn}kn

+ r−u
knδn
− `)

})2

dudr

)p/2
.
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Changing (r− u)/(knδn) to u and noticing that 1
kn

∑∞
i=1−2kn

is a Riemann sum, we obtain
from (A.1) that

E[|ζ̃n,j,`,kn2 |p] .
(∫ jδn

(j−1)δn

∫ ∞
0

(∫ ∞
−2

{
∆2

1GH(v)∆2
1GH(v+ u+ `)

+ ∆2
1GH(v)∆2

1GH(v+ u− `)
}
dv

)2

dudr

)p/2
. δp/2n .

(C.2)

Consequently, ζ̃n,j,`,kn2 is of size δ1/2
n , uniformly in i. Because (3.15) is a sum of martin-

gale increments (note that E[ζ̃n,j,`,kn2 | F(j−1)δn ] = 0), it follows that (3.15) is OP(1). This
is, of course, expected because (3.15) is supposed to contribute to the CLT. But what this
calculation also shows is that before we try to find the limit of (3.15), we can make any mod-
ifications that lead to an oP(1) error. For example, we can replace ηr by η(j−1)δn (this incurs
an OP(δHn ) error) and replace 1

kn
times the two sums after second equality in (C.1) by∫ ∞

−2

{
∆2

1GH(v)∆2
1GH(v+ r−u

knδn
+ `) + ∆2

1GH(v)∆2
1GH(v+ r−u

knδn
− `)

}
dv

(for modifying the upper and lower bounds of the summation, see the discussion after (3.23);
for the integral approximation, the error is at most k−1/2−H

n because ∆2
1GH is (1

2 + H)-
Hölder continuous). We will make two more changes, after which we will arrive at ζn,j,`,kn2 ,
hence proving the second relation in (3.28): first, we replace change the boundaries of the
dWu-integral from

∫ r
0 to

∫ r
r−knδ1−εn

, where ε > 0 is a small but fixed number. Similarly to

(C.2), one can show that the resulting error is δε(1−H)
n . And second, we replace ηu first by

ηr−knδ1−εn
and then by η(j−1)δn , which leads to an OP((knδ

1−ε
n )H) error.

Similar arguments can be employed to show the other two approximations in (3.28). Note
that thanks to Proposition 3.1 and Lemma B.2, we only have to consider the case where
κ= 2H

2H+1 . In order to show the first approximation in (3.28), we interchange summation and
double integration in (3.13) and obtain

Mn,`,kn
1 (t) = 4(knδn)−1−2H 1

kn

∫ [t/δn]δn

`kn

∫ ([s/δn]−(`−2)kn)δn∧([t/δn]−`kn)δn

([s/δn]−(`+2)kn+1)δn∨0

([s/δn]−`kn+1)∧([r/δn]+1)∧([t/δn]−(`+2)kn+1)∑
i=(2+[s/δn]−(`+2)kn)∨(2+[r/δn]−2kn)∨1

χ( [s/δn]−i−`kn+1
2kn−1 )χ( [r/δn]−i+1

2kn−1 )

× (yr − y[r/δn]δn)σrdWr(ys − y[s/δn]δn)σsdWs.

We change i+ `kn − 1− [s/δn] to i and, with similar arguments to those after (C.2), omit
the last ∧(· · · ) and ∨(· · · ) in the boundaries of both the dWr-integral and the sum over i. As
a result,

δ−(1−κ)/2
n Mn,`,kn

1 (t)≈ 4δ−(1−κ)/2
n (knδn)−1−2H 1

kn

∫ [t/δn]δn

`kn

∫ ([s/δn]−(`−2)kn)δn

([s/δn]−(`+2)kn+1)δn

0∧([r/δn]−[s/δn]+`kn∑
i=(1−2kn)∨([r/δn]−[s/δn]+(`−2)kn+1)

χ( −i
2kn−1)χ( [r/δn]−[s/δn]−i+`kn

2kn−1 )

× (yr − y[r/δn]δn)σrdWr(ys − y[s/δn]δn)σsdWs.
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Because
0∧m∑

i=(1−2kn)∨(1−2kn+m)

χ( −i
2kn−1)χ(−i+m2kn−1) = 2knξ(

m
2kn

),

the first approximation in (3.28) follows by replacing all σ’s by σ[s/δn]δn .
Regarding the last approximation in (3.28), we have analogously to (C.1) that

δ−(1−κ)/2
n Mn,`,kn

31 (t) =

[t/δn]−`kn∑
j=1

ζ̃n,j,`,kn31 , δ−(1−κ)/2
n Mn,`,kn

32 (t) =

[t/δn]∑
j=1

ζ̃n,j,`,kn32 ,

δ−(1−κ)/2
n M ′n,`,kn3 (t) =

[t/δn]∑
j=1+`kn

ζ̃ ′n,j,`,kn3 ,

(C.3)

where

ζ̃n,j,`,kn31 =
2(knδn)−1/2−Hδ

−(1−κ)/2
n

kn

∫ jδn

(j−1)δn

∫ s

0

0∧([t/δn]−[s/δn]−(`+2)kn)∑
i=(1−2kn)∨(−[s/δn])

χ( −i
2kn−1)

×∆2
1GH( i−{s/δn}kn

+ s−r
kn

+ `)ηrdWr(ys − y[s/δn]δn)σsdWs,

ζ̃n,j,`,kn32 =
2(knδn)−1/2−Hδ

−(1−κ)/2
n

kn

∫ jδn

(j−1)δn

∫ r∧([t/δn]−`kn)δn

([r/δn]−(`+2)kn+1)δn∨0
(ys − y[s/δn]δn)

×
0∧([t/δn]−[s/δn]−(`+2)kn)∑

i=(1−2kn)∨([r/δn]−[s/δn]−(`+2)kn+1)∨(−[s/δn])

χ( −i
2kn−1)

×∆2
1GH( i−{s/δn}kn

− r−s
kn

+ `)σsdWsηrdWr,

ζ̃ ′n,j,`,kn3 =
2(knδn)−1/2−Hδ

−(1−κ)/2
n

kn

∫ jδn

(j−1)δn

∫ ([s/δn]−(`−2)kn)δn∧([t/δn]−`kn)δn

0
σs

× (ys − y[s/δn]δn)

0∧([t/δn]−[s/δn]−2kn)∑
i=(1−2kn)∨([r/δn]−[s/δn]+(`−2)kn+1)∨(`kn−[s/δn])

χ( −i
2kn−1)

×∆2
1GH( i−{s/δn}kn

+ s−r
kn
− `)ηrdWrdWs.

Since κ = 2H
2H+1 , it can be shown similarly to (C.2) and the subsequent paragraph that

each of the three terms defined in (C.3) is of order OP(1). Therefore, by the same type of
modifications (i.e., discretization of η and σ, dropping ∧(· · · ) and ∨(· · · ) in the summa-
tion over i, approximating sums by integrals, and restricting the dWr-integral in ζ̃n,j,`,kn31

and ζ̃ ′n,j,`,kn31 to r ≥ s− knδ1−ε
n ), we obtain δ−(1−κ)/2

n (Mn,`,kn
31|32 (t)− M̄n,`,kn

31|32 (t))
L1

=⇒ 0 and

δ
−(1−κ)/2
n (M ′n,`,kn3 (t)− M̄ ′n,`,kn3 (t))

L1

=⇒ 0, where

M̄n,`,kn
31|32 (t) =

[t/δn]−`kn∑
j=1

ζ̄n,j,`,kn31|32 , M̄ ′n,`,kn3 (t) =

[t/δn]∑
j=1+`kn

ζ̄ ′n,j,`,kn3
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and

ζ̄n,j,`,kn31 = 2(knδn)−1/2−Hδ−(1−κ)/2
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

∫ s

s−knδ1−εn

∫ 2

0
χ(u2 )

×∆2
1GH( s−rknδn

+ `− u)duη(j−1)δndWr(Ws −W(j−1)δn)dWs,

ζ̄n,j,`,kn32 = 2(knδn)−1/2−Hδ−(1−κ)/2
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

∫ r

([r/δn]−(`+2)kn+1)δn

(Ws −W[s/δn]δn)

×
∫ 2−(( r−s

knδn
−`)∨0)

0
χ(u2 )∆2

1GH(`− r−s
knδn
− u)dudWsη(j−1)δndWr,

ζ̄ ′n,j,`,kn3 = 2(knδn)−1/2−Hδ−(1−κ)/2
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

∫ ([s/δn]−(`−2)kn)δn

s−knδ1−εn

(Ws −W(j−1)δn)

×
∫ 2−((`− s−r

knδn
)∨0)

0
χ(u2 )∆2

1GH( s−rknδn
− `− u)duη(j−1)δndWrdWs.

(C.4)

Let us make three observations: First, for any of the three terms in (C.4), by a straightforward
power-counting argument, if we restrict the inner integral to ((j − 1)δn, s) or ((j − 1)δn, r),
respectively, the second moment of the resulting term will be of order δ1+2H/(2H+1)

n = o(δn),
showing that the latter is asymptotically negligible (cf. (C.2) and the subsequent arguments).
Second, by the definition of χ(t),∫ 2

0
χ(u2 )∆2

1GH( s−rknδn
+ `− u)du=−

∫ 1

0
∆3

1GH( s−rknδn
+ `− u− 1)du.

And finally, because ∆2
1GH(v) = 0 for v ≤−2, there is no harm in extending the du-integral

in ζ̄n,j,`,kn32 and ζ̄ ′n,j,`,kn3 up to the upper bound 2. The aforementioned modifications turn
ζ̄n,j,`,kn32 into ζn,j,`,kn32 and the sum ζ̄n,j,`,kn31 + ζ̄ ′n,j,`,kn3 into ζn,j,`,kn31 , which establishes the last
relation in (3.28).

PROOF OF EQUATION (3.35). For any ν ∈ {1,2,3}, we have seen in the proof of Propo-
sition 3.8 that E[|ζn,j,`,knν |p] . δ

p/2
n , uniformly in j. Setting p = 4, we easily obtain that the

left-hand side of (3.35) is OP(δn).

PROOF OF EQUATION (3.36). We only show (3.36) for ν = 2 as the arguments for ν = 1

and ν = 3 are similar. Note that ζn,j,`,kn2 can be decomposed into two parts, ζn,j,`,kn21 and
ζn,j,`,kn22 , which are defined in the same way as ζn,j,`,kn2 in (3.30), except that the dWu-
integral is restricted to (r−knδ1−ε

n , (j−1)δn) and ((j−1)δn, r), respectively. By definition,
ζn,j,`,kn22 belongs to the second Wiener chaos with respect to W , conditionally on F(j−1)δn .
Thus, E[ζn,j,`,kn22 (Njδn −N(j−1)δn) | F(j−1)δn ] = 0 by the orthogonality of Wiener chaoses
of different orders if N ∈ {W,Ŵ} and by the orthogonality of N and W otherwise. If N is
orthogonal to W , we also have E[ζn,j,`,kn21 (Njδn−N(j−1)δn) | F(j−1)δn ] = 0, so let us assume
that N = W or N = Ŵ . Since the two cases are completely analogous, we take N = W .
Then

E[ζn,j,`,kn21 (Njδn −N(j−1)δn) | F(j−1)δn ]

= δ−(1−κ)/2
n

∫ jδn

(j−1)δn

∫ (j−1)δn

r−knδ1−εn

∫ ∞
−2

{
∆2

1GH(v)∆2
1GH(v+ r−u

knδn
+ `)
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+ ∆2
1GH(v)∆2

1GH(v+ r−u
knδn
− `)

}
dvη(j−1)δndWuη(j−1)δndr.

Since taking conditional expectation is a contraction on L2, this term is still of size OP(δn).
Consequently, for the purpose of showing (3.36), we may replace η(j−1)δn and η(j−1)δn in
the previous display by η(j−1−knδ−εn )δn

and η(j−1−knδ−εn )δn
, respectively. Once we have done

so, the resulting expression will be F(j−1)δn -measurable with vanishing F(j−1−knδ−εn )δn
-

conditional expectation. Therefore, by a martingale size estimate (see [11, Appendix A]),
it follows that

(C.5) E
[∣∣∣∣[t/δn]∑

j=1

E[ζn,j,`,kn21 (Njδn −N(j−1)δn) | F(j−1)δn ]

∣∣∣∣]. (knδ
−ε−1
n )1/2δn→ 0,

proving (3.36) for ν = 2.

PROOF OF EQUATION (3.33). Again let us start with ν = 2. There is no loss of generality
to restrict ourselves to m = 1 and m′ = 2, in which case we simply write kn = k

(1)
n and

k′n = k
(2)
n . We want to find the limit of

(C.6) R
n,`1,kn,`2,k′n
22 (t) =

[t/δn]∑
j=1

E[ζn,j,`1,kn2 ζ
n,j,`2,k′n
2 | F(j−1)δn ],

where `1, `2 ≥ 2, kn ∼ θ1δ
−κ
n and k′n ∼ θ2δ

−κ
n . Moreover, by the flexibility we have in the

truncation of the dWu-integral in (3.30), we may and will assume that it runs from r −
knδ

1−ε
n to r for both ζn,j,`,kn1 and ζn,j,`,kn2 . By Itô’s isometry, we then have Rn,`1,kn,`2,k

′
n

22 (t) =∑3
ι=1R

n,`1,kn,`2,k′n
22,ι (t) where

R
n,`1,kn,`2,k′n
22,1 (t) =

[t/δn]∑
j=1

δ−(1−κ)
n |η(j−1)δn |

4

∫ jδn

(j−1)δn

∫ r

r−knδ1−εn

∫ ∞
−2

{
∆2

1GH(v)

×∆2
1GH(v+ r−u

knδn
+ `1) + ∆2

1GH(v)∆2
1GH(v+ r−u

knδn
− `1)

}
dv

×
∫ ∞
−2

{
∆2

1GH(w)∆2
1GH(w+ r−u

k′nδn
+ `2)

+ ∆2
1GH(w)∆2

1GH(w+ r−u
k′nδn
− `2)

}
dwdudr,

R
n,`1,kn,`2,k′n
22,2 (t) =

[t/δn]∑
j=1

δ−(1−κ)
n |η(j−1)δn |

2

∫ jδn

(j−1)δn

∫ (j−1)δn

r−knδ1−εn

∫ ∞
−2

{
∆2

1GH(v)

×∆2
1GH(v+ r−u

knδn
+ `1) + ∆2

1GH(v)∆2
1GH(v+ r−u

knδn
− `1)

}
dv

×
∫ u

r−knδ1−εn

∫ ∞
−2

{
∆2

1GH(w)∆2
1GH(w+ r−u′

k′nδn
+ `2) + ∆2

1GH(w)

×∆2
1GH(w+ r−u′

k′nδn
− `2)

}
dwη(j−1)δndWu′η(j−1)δndWudr,

R
n,`1,kn,`2,k′n
22,3 (t) =

[t/δn]∑
j=1

δ−(1−κ)
n |η(j−1)δn |

2

∫ jδn

(j−1)δn

∫ (j−1)δn

r−knδ1−εn

∫ ∞
−2

{
∆2

1GH(v)

×∆2
1GH(v+ r−u

k′nδn
+ `2) + ∆2

1GH(v)∆2
1GH(v+ r−u

k′nδn
− `2)

}
dv
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×
∫ u

r−knδ1−εn

∫ ∞
−2

{
∆2

1GH(w)∆2
1GH(w+ r−u′

knδn
+ `1) + ∆2

1GH(w)

×∆2
1GH(w+ r−u′

knδn
− `1)

}
dwη(j−1)δndWu′η(j−1)δndWudr.

Repeating the argument leading to (C.5) shows that Rn,`1,kn,`2,k
′
n

22,2 (t) and Rn,`1,kn,`2,k
′
n

22,3 (t) are
OP((knδ

−ε
n /δn)1/2δn) = OP((knδ

1−ε
n )1/2) = oP(1), and hence they do not contribute to the

limit of (C.6). So only Rn,`1,kn,`2,k
′
n

22,1 (t) is asymptotically relevant.
By a change of variables ((r− u)/δ1−κ

n to u),

R
n,`1,kn,`2,k′n
22,1 (t) =

[t/δn]∑
j=1

|η(j−1)δn |
4

∫ jδn

(j−1)δn

∫ knδκ−εn

0

∫ ∞
−2

{
∆2

1GH(v)

×∆2
1GH(v+ u δ

−κ
n

kn
+ `1) + ∆2

1GH(v)∆2
1GH(v+ u δ

−κ
n

kn
− `1)

}
dv

×
∫ ∞
−2

{
∆2

1GH(w)∆2
1GH(w+ u δ

−κ
n

k′n
+ `2)

+ ∆2
1GH(w)∆2

1GH(w+ u δ
−κ
n

k′n
− `2)

}
dwdudr,

so we obtain Rn,`1,kn,`2,k
′
n

22,1 (t)∼ γ`1,θ1,`2,θ22 (H)Γ2(t) once we establish

γ`1,θ1,`2,θ22 (H) =

∫ ∞
0

∫ ∞
−2

{
∆2

1GH(v)∆2
1GH(v+ u/θ1 + `1)

+ ∆2
1GH(v)∆2

1GH(v+ u/θ1 − `1)
}
dv

×
∫ ∞
−2

{
∆2

1GH(w)∆2
1GH(w+ u/θ2 + `2)

+ ∆2
1GH(w)∆2

1GH(w+ u/θ2 − `2)
}
dwdu.

(C.7)

By (2.12) (and its extension to ` ∈R as shown in the proof), the right-hand side equals
1

4(2H + 1)2(2H + 2)2

∫ ∞
0

(δ4
1 |u/θ1 + `1|2H+2 + δ4

1 |u/θ1 − `1|2H+2)

× (δ4
1 |u/θ2 + `2|2H+2 + δ4

1 |u/θ2 − `2|2H+2)du

=
1

4(2H + 1)2(2H + 2)2

(∫
R
δ4

1 |u/θ1 + `1|2H+2δ4
1 |u/θ2 + `2|2H+2du

+

∫
R
δ4

1 |u/θ1 + `1|2H+2δ4
1 |u/θ2 − `2|2H+2du

)
,

(C.8)

where the second step follows by symmetry. By Parseval’s identity,∫
R
δ4

1 |u/θ1 + `1|2H+2δ4
1 |u/θ2 + `2|2H+2du

=
1

(θ1θ2)2H+2

∫
R
δ4
θ1 |u+ `1θ1|2H+2δ4

θ2 |u+ `2θ2|2H+2du

=
1

2π(θ1θ2)2H+2

∫
R
ei(`1θ1−`2θ2)ξF [|x|2H+2](ξ)2

× (e
1

2
iθ1ξ − e−

1

2
iθ1ξ)4(e

1

2
iθ2ξ − e−

1

2
iθ2ξ)4dξ.

(C.9)
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The product (e
1

2
iθ1ξ − e−

1

2
iθ1ξ)4(e

1

2
iθ2ξ − e−

1

2
iθ2ξ)4 translates into δ4

θ1
δ4
θ2

in the time domain.
Together with (A.8), this yields∫

R
δ4

1 |u/θ1 + `1|2H+2δ4
1 |u/θ2 + `2|2H+2du

=
2 cos2(π(H + 3

2))Γ(2H + 3)2

π(θ1θ2)2H+2

∫
R
ei(`1θ1−`2θ2)ξ|ξ|−4H−6

× (e
1

2
iθ1ξ − e−

1

2
iθ1ξ)4(e

1

2
iθ2ξ − e−

1

2
iθ2ξ)4dξ

=
4 cos2(π(H + 3

2)) cos(π(2H + 5
2))Γ(2H + 3)2Γ(−5− 4H)

π(θ1θ2)2H+2
δ4
θ1δ

4
θ2 |`2θ2 − `1θ1|4H+5,

where the last step is valid for all H ∈ (0, 1
2) \ {1

4}. Inserting this into (C.8) and simplifying
the resulting expression, we finally obtain (C.7) if H /∈ {1

4 ,
1
2}. To obtain the results for

H ∈ {1
4 ,

1
2}, it suffices by the dominated convergence theorem to let H → 1

4 and H → 1
2 in

the formula established forH ∈ (0, 1
2)\{1

4}. As there is no singularity atH = 1
2 , this formula

continues to hold forH = 1
2 . ForH = 1

4 , it suffices to note that (1−1/ cos(2πH))(H− 1
4)→

1
2π as H→ 1

4 and that

lim
H→ 1

4

δ4
θ1
δ4
θ2
|`2θ2 − `1θ1|4H+5

H − 1
4

= 4δ4
θ1δ

4
θ2 [|`2θ2 − `1θ1|6 log|`2θ2 − `1θ1|]

by L’Hôpital’s rule.

Next, we consider ν = 1. As in (C.6) we want to find the limit of

R
n,`1,kn,`2,k′n
11 (t) =

[t/δn]∑
j=1

E[ζn,j,`1,kn1 ζ
n,j,`2,k′n
1 | F(j−1)δn ],

where `1, `2 ≥ 2, kn ∼ θ1δ
−κ
n and k′n ∼ θ2δ

−κ
n with κ= 2H

2H+1 .
By Itô’s isometry,

R
n,`1,kn,`2,k′n
11 (t) = 64δκ−1

n (θ1θ2)−1−2Hδ−2
n

[t/δn]∑
j=1

∫ jδn

(j−1)δn

σ8
(j−1)δn

×E
[∫ ([s/δn]−(`1−2)kn)δn

([s/δn]−(`1+2)kn+1)δn

ξ( [r/δn]−[s/δn]+`1kn
2kn

)(Wr −W[r/δn]δn)dWr

×
∫ ([s/δn]−(`2−2)k′n)δn

([s/δn]−(`2+2)k′n+1)δn

ξ( [r/δn]−[s/δn]+`2k′n
2k′n

)(Wr −W[r/δn]δn)dWr

× (Ws −W[s/δn]δn)2
∣∣∣F(j−1)δn

]
ds.

Further conditioning on F[s/δn]δn = F(j−1)δn , we can replace (Ws −W[s/δn]δn)2 simply by
s − (j − 1)δn. Hereafter, we can further remove the boundaries of the two dWr-integrals
because ξ(t) = 0 for |t|> 1. Consequently,

R
n,`1,kn,`2,k′n
11 (t) = 64δκ−1

n (θ1θ2)−1−2Hδ−2
n

[t/δn]∑
j=1

σ8
(j−1)δn

∫ jδn

(j−1)δn

(s− (j − 1)δn)

×
∫
R
ξ( [r/δn]−[s/δn]

2kn
+ `1

2 )ξ( [r/δn]−[s/δn]
2k′n

+ `2
2 )(r− [r/δn]δn)drds.
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Changing r− [s/δn]δn to u, we can write

R
n,`1,kn,`2,k′n
11 (t) = 64δκ−1

n (θ1θ2)−1−2Hδ−2
n

[t/δn]∑
j=1

σ8
(j−1)δn

∫ jδn

(j−1)δn

(s− (j − 1)δn)

×
∫
R
ξ( [u/δn]

2kn
+ `1

2 )ξ( [u/δn]
2k′n

+ `2
2 )(u− [u/δn]δn)duds

= 64δκ−1
n (θ1θ2)−1−2Hδ−2

n

[t/δn]∑
j=1

σ8
(j−1)δn

∫ jδn

(j−1)δn

(s− (j − 1)δn)

×
∞∑

i=−∞

∫ iδn

(i−1)δn

ξ( i−1
2kn

+ `1
2 )ξ( i−1

2k′n
+ `2

2 )(u− (i− 1)δn)duds.

Computing the duds-integrals and observing that δκn
∑∞

i=−∞ and δn
∑[t/δn

j=1 are Riemann
sums, we have that

R
n,`1,kn,`2,k′n
11 (t)∼ 16(θ1θ2)−1−2H

∫ t

0
σ8
sds

∫
R
ξ( v

2θ1
+ `1

2 )ξ( v
2θ2

+ `2
2 )dv.

Next, we realize that ξ(t) is equal to −1
4δ

4
1 |x| evaluated at x= 2t. Thus,

R
n,`1,kn,`2,k′n
11 (t)∼ (θ1θ2)−2−2HΓ1(t)

∫
R
δ4
θ1 |v+ `1θ1|δ4

θ2 |v+ `2θ2|dv.

It remains to derive a closed-form expression for the integral. By Parseval’s identity and
(A.8) (and a limit argument noting that 2Γ(α+ 1) cos(π(α+1)

2 )→ π
6 as α→−4), it is given

by

2

π

∫
R
ei(`1θ1−`2θ2)ξ|ξ|−4(e

1

2
iθ1ξ − e−

1

2
iθ1ξ)4(e

1

2
iθ2ξ − e−

1

2
iθ2ξ)4dξ =

1

3
δ4
θ1δ

4
θ2 |`1θ1 − `2θ2|3,

which completes the proof of (3.33) for ν = 1.

Finally, let us consider ν = 3 and, as a first step, note that

(C.10) R
n,`1,kn,`2,k′n
31,32 (t) =

[t/δn]∑
j=1

E[ζn,j,`1,kn31 ζ
n,j,`2,k′n
32 | F(j−1)δn ] = 0

because E[Ws −W(j−1)δn | F(j−1)δn ] = 0. Thus, it remains to find the limits of

(C.11) R
n,`1,kn,`2,k′n
31|32,31|32 (t) =

[t/δn]∑
j=1

E[ζn,j,`1,kn31|32 ζ
n,j,`2,k′n
31|32 | F(j−1)δn ].

To this end, we define

(C.12) GH(t) =
K−1
H

(H + 1
2)(H + 3

2)
t
H+3/2
+ ,

such that
∫ 1

0 GH(t− u)H+1/2du= GH(t)−GH(t− 1) for all t ∈R and therefore,

(C.13)
∫ 1

0
∆3

1GH( s−rknδn
+ `− u− 1)du= δ4

1GH( s−rknδn
+ `)
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for all ` ∈ R. Analogously to the arguments between (C.6) and (C.7), it suffices to consider,
instead of Rn,`1,kn,`2,k

′
n

31|32,31|32 (t), the simpler terms

R̃
n,`1,kn,`2,k′n
31,31 (t) = 4(knδn)−1/2−H(k′nδn)−1/2−Hδ−(1−κ)

n

[t/δn]∑
j=1

∫ jδn

(j−1)δn

σ4
(j−1)δn

|η(j−1)δn |
2

×
∫ (j−1)δn

s−knδ1−εn

(δ4
1GH( s−rknδn

+ `1) + δ4
1GH( s−rknδn

− `1))

× (δ4
1GH( s−rk′nδn

+ `2) + δ4
1GH( s−rk′nδn

− `2))dr(s− (j − 1)δn)ds

(C.14)

and

R̃
n,`1,kn,`2,k′n
32,32 (t) = 4(knδn)−1/2−H(k′nδn)−1/2−Hδ−(1−κ)

n

[t/δn]∑
j=1

∫ jδn

(j−1)δn

σ4
(j−1)δn

|η(j−1)δn |
2

×
∫ (j−1)δn

r−((`1+2)kn∧(`2+2)k′n)δn

δ4
1GH(`1 − r−s

knδn
)δ4

1GH(`2 − r−s
k′nδn

)(s− [s/δn]δn)dsdr.

(C.15)

In (C.14), changing (s− r)/δ1−κ
n to u and s− (j − 1)δn to v, we obtain

R̃
n,`1,kn,`2,k′n
31,31 (t) = 4(knδn)−1/2−H(k′nδn)−1/2−H

[t/δn]∑
j=1

∫ δn

0
σ4

(j−1)δn
|η(j−1)δn |

2

×
∫ knδκ−εn

v

δ
1−κ
n

(δ4
1GH(u δ

−κ
n

kn
+ `1) + δ4

1GH(u δ
−κ
n

kn
− `1))

× (δ4
1GH(u δ

−κ
n

k′n
+ `2) + δ4

1GH(u δ
−κ
n

k′n
− `2))du · vdv

∼ ρ`1,θ1,`2,θ231,31 Γ3(t),

where

(C.16)
ρ`1,θ1,`2,θ231,31 =

2

(θ1θ2)1/2+H

∫ ∞
0

(δ4
1GH(u/θ1 + `1) + δ4

1GH(u/θ1 − `1))

× (δ4
1GH(u/θ2 + `2) + δ4

1GH(u/θ2 − `2))du.

Similarly, changing (r− s)/δ1−κ
n to u, we derive

R̃
n,`1,kn,`2,k′n
32,32 (t) = 4(knδn)−1/2−H(k′nδn)−1/2−H

[t/δn]∑
j=1

∫ jδn

(j−1)δn

σ4
(j−1)δn

|η(j−1)δn |
2

×
∫ (`1+2)kn∧(`2+2)k′n

δ
−κ
n

r−(j−1)δn

δ
1−κ
n

(δ4
1GH(`1 − u δ

−κ
n

kn
) + δ4

1GH(`2 − u δ
−κ
n

k′n
))

× (r− uδ1−κ
n − [r/δn − uδ−κn ]δn)dudr

∼ 4(knδn)−1/2−H(k′nδn)−1/2−H
[t/δn]∑
j=1

σ4
(j−1)δn

|η(j−1)δn |
2
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×
∫ (`1+2)kn∧(`2+2)k′n

δ
−κ
n

0
(δ4

1GH(`1 − u δ
−κ
n

kn
) + δ4

1GH(`2 − u δ
−κ
n

k′n
))

×
∫ jδn

(j−1)δn

(r− uδ1−κ
n − [r/δn − uδ−κn ]δn)drdu.

Note that the last dr-integral equals
∫ δn

0 rdr = 1
2δ

2
n, so that

R̃
n,`1,kn,`2,k′n
32,32 (t)∼ ρ`1,θ1,`2,θ232,32

∫ t

0
σ4
s |ηs|2ds,

where

(C.17) ρ`1,θ1,`2,θ232,32 =
2

(θ1θ2)1/2+H

∫ (`1+2)θ1∧(`2+2)θ2

0
δ4

1GH(`1−u/θ1)δ4
1GH(`2−u/θ2)du.

Using the fact that δ4
1GH(t) = 0 for t≤−2, we can extend the previous integral up to +∞,

which shows that

ρ`1,θ1,`2,θ231,31 + ρ`1,θ1,`2,θ232,32 =
2

(θ1θ2)1/2+H

∫
R
(δ4

1GH(u/θ1 + `1) + δ4
1GH(u/θ1 − `1))

× (δ4
1GH(u/θ2 + `2) + δ4

1GH(u/θ2 − `2))du.

We want to show that this is exactly γ`1,θ1,`2,θ23 (H), which would then finish the proof of
(3.33). Switching to the Fourier domain, we use (A.7), (A.8), (A.9) and (2.7) to obtain∫

R
δ4

1GH(u/θ1 + `1)δ4
1GH(u/θ2 + `2)du

=
K−2
H

(θ1θ2)H+3/2(H + 1
2)2(H + 3

2)2

∫
R
δ4
θ1(u+ `1θ1)

H+3/2
+ δ4

θ2(u+ `2θ2)
H+3/2
+ du

=
K−2
H Γ(H + 1

2)2

2π(θ1θ2)H+3/2

∫
R
eiξ(`1θ1−`2θ2)e−iπ(H+5/2)/2(ξ − i0)−H−5/2

× eiπ(H+5/2)/2(ξ + i0)−H−5/2(e
1

2
iθ1ξ − e−

1

2
iθ1ξ)4(e

1

2
iθ2ξ − e−

1

2
iθ2ξ)4dξ

=
sin(πH)Γ(2H + 1)

2π(θ1θ2)H+3/2

∫
R
eiξ(`1θ1−`2θ2)|ξ|−2H−5(e

1

2
iθ1ξ − e−

1

2
iθ1ξ)4(e

1

2
iθ2ξ − e−

1

2
iθ2ξ)4dξ

=
sin(πH)Γ(2H + 1)Γ(−2H − 4) cos(π(H + 2))

π
(θ1θ2)−H−3/2δ4

θ1δ
4
θ2 |`2θ2 − `1θ1|2H+4

for H ∈ (0, 1
2). The last fraction is equal to −1/(32(H + 1

2)(H + 1)(H + 3
2)(H + 2)), which

shows that ρ`1,θ1,`2,θ231,31 + ρ`1,θ1,`2,θ232,32 = γ`1,θ1,`2,θ23 (H) for H ∈ (0, 1
2). As before, the expression

for H = 1
2 can be obtained by letting H → 1

2 , and since there is no singularity at H = 1
2 in

the formula defining γ`1,θ1,`2,θ23 (H), it remains valid for H = 1
2 .

PROOF OF EQUATION (3.34). Let us start by showing that

R
n,`1,kn,`2,k′n
2,31|32 (t) =

[t/δn]∑
j=1

E[ζn,j,`1,kn2 ζ
n,j,`2,k′n
31|32 | F(j−1)δn ]

P−→ 0.
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By (3.30) and (3.31) and Itô’s isometry, we have

R
n,`1,kn,`2,k′n
2,31 (t) =−2

[t/δn]∑
j=1

(k′nδn)−1/2−Hδ−(1−κ)
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

η2
(j−1)δn

×
∫ (j−1)δn

s−k′nδ
1−ε
n

∫ 1

0

{
∆3

1GH( s−rk′nδn
+ `2 − u− 1)

+ ∆3
1GH( s−rk′nδn

− `2 − u− 1)
}
duη(j−1)δndWr

×
∫ s

(j−1)δn

∫ ∞
−2

{
∆2

1GH(v)∆2
1GH(v+ s−w

knδn
+ `1)

+ ∆2
1GH(v)∆2

1GH(v+ s−w
knδn
− `1)

}
dvdwds.

For each j, we know from the analysis of Rn,`1,kn,`2,k
′
n

22 and Rn,`1,kn,`2,k
′
n

31,31 that ζn,j,`1,kn2 and

ζ
n,j,`2,k′n
31 are of order OP(δ

1/2
n ), uniformly in i. Therefore, we are free to modify terms in

the previous display as long as it leads to an asymptotically vanishing error. For example, for
any fixed j, we may replace σ2

(j−1)δn
η2

(j−1)δn
and η(j−1)δn by σ2

(j−1−k′nδ
−ε
n )δn

η2
(j−1−k′nδ

−ε
n )δn

and η(j−1−k′nδ
−ε
n )δn

, respectively. Once we have done so, the resulting term, for fixed j, will
be F(j−1)δn -measurable with vanishing F(j−1−k′nδ

−ε
n )δn

-conditional expectation. Thus, by
a martingale size estimate (see [11, Appendix A]), the sum over j will be of magnitude
OP(δ

−(κ+ε+1)/2
n δ

1/2
n δ

1/2
n ) = oP(1), proving Rn,`1,kn,`2,k

′
n

2,31 ≈ 0.

The reasoning for Rn,`1,kn,`2,k
′
n

2,32 is similar. Again by Itô’s isometry,

R
n,`1,kn,`2,k′n
2,32 (t) =−2

[t/δn]∑
j=1

(k′nδn)−1/2−Hδ−(1−κ)
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

|η(j−1)δn |
2

×
∫ (j−1)δn

r−(`2+1)k′nδn

∫ 1

0
∆3

1GH(`2 − r−s
k′nδn
− u− 1)du(Ws −W[s/δn]δn)dWs

×
∫ (j−1)δn

r−knδ1−εn

∫ ∞
−2

∆2
1GH(v)

{
∆2

1GH(v+ r−w
knδn

+ `1)

+ ∆2
1GH(v+ r−w

knδn
− `1)

}
dvη(j−1)δndWwdr.

We can now use integration by parts to expand the product of the dWs-integral and the dWw-
integral. As in the analysis of Rn,`1,kn,`2,k

′
n

2,31 above, the martingale terms can be shown to be
negligible. So only the quadratic variation part remains and

R
n,`1,kn,`2,k′n
2,32 (t)≈−2

[t/δn]∑
j=1

(k′nδn)−1/2−Hδ−(1−κ)
n

∫ jδn

(j−1)δn

σ2
(j−1)δn

|η(j−1)δn |
2η(j−1)δn

×
∫ (j−1)δn

r−(`2+1)k′nδn

∫ 1

0
∆3

1GH(`2 − r−s
k′nδn
− u− 1)du(Ws −W[s/δn]δn)

×
∫ ∞
−2

∆2
1GH(v)

{
∆2

1GH(v+ r−s
knδn

+ `1) + ∆2
1GH(v+ r−s

knδn
− `1)

}
dvdsdr.

Now we apply the same trick as before: we first shift the index of σ2
(j−1)δn

|η(j−1)δn |2η(j−1)δn

to (j − 1− (`2 + 1)k′n)δn and then realize that the conditional expectation of the resulting
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expression given F(j−1−(`2+1)k′n)δn is zero. Thus, by another martingale size estimate, we

obtain Rn,`1,kn,`2,k
′
n

2,32 ≈ 0. Since the proof of

R
n,`1,kn,`2,k′n
12|1,31 (t) =

[t/δn]∑
j=1

E[ζn,j,`1,kn1 ζ
n,j,`2,k′n
2|31 | F(j−1)δn ]

P−→ 0

is very similar, we omit the details and leave it to the reader. Lastly, by Itô’s isometry, we
have

R
n,`1,kn,`2,k′n
1,32 (t) =

[t/δn]∑
j=1

E[ζn,j,`1,kn1 ζ
n,j,`2,k′n
32 | F(j−1)δn ]≡ 0.
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