Asymptotic stability of 2-domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2024

Asymptotic stability of 2-domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction

Résumé

We consider a ferromagnetic nanowire, with an energy functional E with easy-axis in the direction e_1, and which takes into account the Dzyaloshinskii-Moriya interaction. We consider configurations of the magnetization which are perturbations of two well separated domain wall, and study their evolution under the Landau-Lifshitz-Gilbert flow associated to E. Our main result is that, if the two walls have opposite speed, these configurations are asymptotically stable, up to gauges intrinsic to the invariances of the energy E. Our analysis builds on the framework developed in [4], taking advantage that it is amenable to space localisation.
Fichier principal
Vignette du fichier
main.pdf (384.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03913853 , version 1 (27-12-2022)

Identifiants

Citer

Raphaël Côte, Guillaume Ferriere. Asymptotic stability of 2-domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction. International Mathematics Research Notices, 2024, 2024 (4), pp.3551-3600. ⟨10.1093/imrn/rnad249⟩. ⟨hal-03913853⟩
95 Consultations
46 Téléchargements

Altmetric

Partager

More