Physical Simulation Layer for Accurate 3D Modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Physical Simulation Layer for Accurate 3D Modeling

Résumé

We introduce a novel approach for generative 3D modeling that explicitly encourages the physical and thus functional consistency of the generated shapes. To this end, we advocate the use of online physical simulation as part of learning a generative model. Unlike previous related methods, our approach is trained end-to-end with a fully differentiable physical simulator in the training loop. We accomplish this by leveraging recent advances in differentiable programming, and introducing a fully differentiable pointbased physical simulation layer, which accurately evaluates the shape's stability when subjected to gravity. We then incorporate this layer in a signed distance function (SDF) shape decoder. By augmenting a conventional SDF decoder with our simulation layer, we demonstrate through extensive experiments that online physical simulation improves the accuracy, visual plausibility and physical validity of the resulting shapes, while requiring no additional data or annotation effort.
Fichier principal
Vignette du fichier
CVPR22_OnlinePhysSim.pdf (3.26 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03912168 , version 1 (23-12-2022)

Identifiants

Citer

Mariem Mezghanni, Théo Bodrito, Malika Boulkenafed, Maks Ovsjanikov. Physical Simulation Layer for Accurate 3D Modeling. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022), Jun 2022, La Nouvelle Orléans, LA, United States. pp.13504-13513, ⟨10.1109/CVPR52688.2022.01315⟩. ⟨hal-03912168⟩
13 Consultations
47 Téléchargements

Altmetric

Partager

More