Relating incompatibility, noncommutativity, uncertainty and Kirkwood-Dirac nonclassicality
Résumé
We provide an in-depth study of the recently introduced notion of completely incompatible observables and its links to the support uncertainty and to the Kirkwood-Dirac nonclassicality of pure quantum states. The latter notion has recently been proven central to a number of issues in quantum information theory and quantum metrology. In this last context, it was shown that a quantum advantage requires the use of Kirkwood-Dirac nonclassical states. We establish sharp bounds of very general validity that imply that the support uncertainty is an efficient Kirkwood-Dirac nonclassicality witness. When adapted to completely incompatible observables that are close to mutually unbiased ones, this bound allows us to fully characterize the Kirkwood-Dirac classical states as the eigenvectors of the two observables. We show furthermore that complete incompatibility implies several weaker notions of incompatibility, among which features a strong form of noncommutativity.