Convergence analysis of time-domain PMLs for 2D electromagnetic wave propagation in dispersive waveguides - Archive ouverte HAL
Journal Articles ESAIM: Mathematical Modelling and Numerical Analysis Year : 2023

Convergence analysis of time-domain PMLs for 2D electromagnetic wave propagation in dispersive waveguides

Abstract

This work is dedicated to the analysis of generalized perfectly matched layers (PMLs) for 2D electromagnetic wave propagation in dispersive waveguides. Under quite general assumptions on frequency-dependent dielectric permittivity and magnetic permeability we prove convergence estimates in homogeneous waveguides and show that the PML error decreases exponentially with respect to the absorption parameter and the length of the absorbing layer. The optimality of this error estimate is studied both numerically and analytically. Finally, we demonstrate that in the case when the waveguide contains a heterogeneity supported away from the absorbing layer, instabilities may occur, even in the case of the non-dispersive media. Our findings are illustrated by numerical experiments.
Fichier principal
Vignette du fichier
mainreport_to_submit.pdf (1.99 Mo) Télécharger le fichier
erratum.pdf (24.11 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03910611 , version 1 (22-12-2022)

Licence

Identifiers

  • HAL Id : hal-03910611 , version 1

Cite

Eliane Bécache, Maryna Kachanovska, Markus Wess. Convergence analysis of time-domain PMLs for 2D electromagnetic wave propagation in dispersive waveguides. ESAIM: Mathematical Modelling and Numerical Analysis, 2023. ⟨hal-03910611⟩
160 View
93 Download

Share

More