Generating Questions from Wikidata Triples - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Generating Questions from Wikidata Triples

Résumé

Question generation from knowledge bases (or knowledge base question generation, KBQG) is the task of generating questions from structured database information, typically in the form of triples representing facts. To handle rare entities and generalize to unseen properties, previous work on KBQG resorted to extensive, often ad-hoc pre-and post-processing of the input triple. We revisit KBQG-using pre-training, a new (triple, question) dataset and taking question type into account-and show that our approach outperforms previous work both in a standard and in a zero-shot setting. We also show that the extended KBQG dataset (also helpful for knowledge base question answering) we provide allows not only for better coverage in terms of knowledge base (KB) properties but also for increased output variability in that it permits the generation of multiple questions from the same KB triple. Our code and dataset can be found at: https://gitlab.inria.fr/hankelvin/wikidataqg
Fichier principal
Vignette du fichier
2022.lrec-1.29.pdf (311.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03909961 , version 1 (21-12-2022)

Identifiants

  • HAL Id : hal-03909961 , version 1

Citer

Kelvin Han, Thiago Castro Ferreira, Claire Gardent. Generating Questions from Wikidata Triples. 13th Edition of its Language Resources and Evaluation Conference, Jun 2022, Marseille, France. ⟨hal-03909961⟩
117 Consultations
110 Téléchargements

Partager

More