Boundary singular problems for quasilinear equations involving mixed reaction-diffusion - Archive ouverte HAL Access content directly
Journal Articles Contemporary Mathematics. Fundamental directions Year : 2022

Boundary singular problems for quasilinear equations involving mixed reaction-diffusion

Laurent Véron

Abstract

We study the existence of solutions to the problem \[\label{eng_A1} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 \text{in }\;\Omega,\\ u=\mu \text{on }\;\partial\Omega \end{array}\] in a bounded domain \(\Omega\), where \(p1\), \(1q2\), \(M0\), \(\mu\) is a nonnegative Radon measure in \(\partial\Omega\), and the associated problem with a boundary isolated singularity at \(a\in\partial\Omega,\) \[\label{eng_A2} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 \text{in }\;\Omega,\\ u=0 \text{on }\;\partial\Omega\setminus\{a\}. \end{array}\] The difficulty lies in the opposition between the two nonlinear terms which are not on the same nature. Existence of solutions to[eng_A1] is obtained under a capacitary condition \[\mu(K)\leq c\min\left\{cap^{\partial\Omega}_{\frac{2}{p},p'},cap^{\partial\Omega}_{\frac{2-q}{q},q'}\right\}\quad\text{for all compacts }K\subset\partial\Omega.\] Problem[eng_A2] depends on several critical exponents on \(p\) and \(q\) as well as the position of \(q\) with respect to \(\dfrac{2p}{p+1}\).
Fichier principal
Vignette du fichier
Contribution-2tex.pdf (227.63 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03909821 , version 1 (21-12-2022)

Licence

Attribution - NonCommercial

Identifiers

Cite

Laurent Véron. Boundary singular problems for quasilinear equations involving mixed reaction-diffusion. Contemporary Mathematics. Fundamental directions, 2022, 68 (4), pp.564-574. ⟨10.22363/2413-3639-2022-68-4-564-574⟩. ⟨hal-03909821⟩
25 View
29 Download

Altmetric

Share

Gmail Facebook X LinkedIn More