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Boundary singular problems for quasilinear

equations involving mixed reaction-diffusion

Laurent Véron∗

1 Introduction

Let Ω ⊂ RN be a bounded C2 domain, p > 1, 1 < q < 2 andM > 0. We present some
results concerning the singular boundary behaviour of positive functions satisfying

Lp,q,Mu := −∆u+ up −M |∇u|q = 0 (1.1)

in Ω. The main characteristic of the operator Lp,q,M is that it exhibits a competition
between the absorption term up and the source reaction term |∇u|q, and these terms
are not of the same nature. This competition has for consequence the emergence of
a rich variety of phenomena. Most of the results presented here have been obtained
in collaboration with Bidaut-Véron and Garcia Huidobro [8] . Our study emphasises
two directions:

1- Existence of solutions with a measure as boundary data.
2- Description of the solutions with a boundary isolated singularity.

If q = 2p
p+1 equation (1.1) is invariant under the scaling transformations T`, ` > 0

defined by

T`[u](x) = `
2
p−1u(`x). (1.2)

If 1 < q < 2p
p+1 , the absorption term is dominant and the behaviour of singular

solutions is modelled by the Emden-Fowler equation

−∆u+ up = 0. (1.3)

If q > 2p
p+1 , the source term is dominant and the behaviour of singular solutions is

modelled by an eikonal equation

up −M |∇u|q = 0. (1.4)
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Another equation which plays a crucial role is the Riccatti equation

−∆u−M |∇u|q = 0. (1.5)

If q = 2p
p+1 no reaction term is dominent and the value of M becomes fundamental.

An important tool for constructing solutions lies in the existence of natural sub and

supersolutions which are naturally ordered if they have the same boundary data:
the Emden-Fowler equation (resp. the Riccatti equation) is a subsolution (resp.
supersolution) for (1.1).

The problems of boundary singularities and measure boundary value problems
for related operators have been studied recently, but with different relations between
the reaction terms. In the following equation studied in [16] the two reaction effects
are cumulative even if they are not of the same nature

−∆u+ up +M |∇u|q = 0. (1.6)

In that case one term may become dominent but there is no cancelation. The
equations with only one absorption term, up or M |∇u|q are natural supersolutions.

In the next equation
−∆u− up −M |∇u|q = 0, (1.7)

the two reaction effects are source terms. Again there is an addition of effects. The
equations with only one source term, up or M |∇u|q are natural subsolutions. In
the publication [6] it is performed an analysis of the problem which presents some
analogy with the one developed here.

The singular boundary value problem for the somewhat similar equation

−∆u− up +M |∇u|q = 0, (1.8)

is studied in [10]. Therein, the two reaction terms are also in opposition, a situation
which presents some similarities to the one developed here, but the effects of this
opposition are very different.

2 Removable boundary singularities

We assume that Ω is a bounded C2 domain and 0 ∈ ∂Ω. We set ρ(x) = dist (x, ∂Ω).

Theorem 2.1 Let p ≥ N+1
N−1 , M > 0 and u ∈ C2(Ω) ∩ C1(Ω \ {0}) is a nonnegative

function which satisfies

Lp,q,Mu = 0 in Ω, u = 0 in ∂Ω \ {0}. (2.1)
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Assume that one of the following conditions holds:
(i) either p = N+1

N−1 and 1 < q < N+1
N ,

(ii) or p > N+1
N−1 and 1 < q ≤ 2p

p+1 .

Then u ∈ L1(Ω) ∩ Lpρ(Ω), ∇u ∈ Lqρ(Ω) and∫
Ω

(−u∆ζ + (up −M |∇u|q)ζ) dx = 0 for all ζ ∈ X(Ω), (2.2)

where

X(Ω) := {ζ ∈ C1(Ω) : ζ = 0 on ∂Ω, ∆ζ ∈ L∞(Ω)}. (2.3)

Furthermore, if we assume either (i) that is p = N+1
N−1 and 1 < q < N+1

N , or

(iii) p > N+1
N−1 and 1 < q < 2p

p+1 , or

(iv) p > N+1
N−1 , q = 2p

p+1 and

M < m∗∗ := (p+ 1)

(
(N − 1)p− (N + 1)

2p

) p
p+1

, (2.4)

then u = 0

Remark. Notice that in the case (i) there exist positive functions satisfying (2.1)
with a singularity concentrated at 0. This singularity is not detected in the sense of
distributions. The same phenomenon occurs for solutions of

−∆u = up in Ω, u = 0 in ∂Ω \ {0}, (2.5)

when N+1
N−1 ≤ p <

N+1
N−3 , see [5].

Proof of Theorem 2.1
Step 1: A priori estimate. If M ≥ 0, 1 < q < min{p, 2} and u ≥ 0 satisfies (2.1),
then for some c1 > 0, we first prove by a modification of the Keller-Osserman method
that

u(x) ≤ c1 max
{
M

1
p−q |x|−

q
p−q , |x|−

2
p−1

}
for all x ∈ Ω. (2.6)

As a consequence, using the regularity properties of elliptic equations (see e.g. [14])
and the scaling transformation T`, which is possible as long as q ≤ 2p

p+1 , we obtain
an estimate on the gradient:

|∇u(x)| ≤ c2 max
{
|x|−

p
p−q , |x|−

p+1
p−1

}
for all x ∈ Ω ∩B1. (2.7)

Step 2: Change of unknown. Set u = vb with 0 < b ≤ 1, then v satisfies

−∆v − (b− 1)
|∇v|2

v
+

1

b
v(p−1)b+1 = Mbq−1v(b−1)(q−1)|∇v|q. (2.8)
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The problem is to get rid of the term on the right-hand side, and this is done as it
follows: let ε > 0, by Hölder’s inequality we have

v(b−1)(q−1)|∇v|q ≤ qε
2
q

2

|∇v|2

v
+

2− q

2ε
2

2−q
v

(2b−1)q−2(b−1)
2−q .

Then (2.8) yields

−∆v +

(
1− b−M qbq−1ε

2
q

2

)
|∇v|2

v

+
1

b
v(p−1)b+1 −Mbq−1 2− q

2ε
2

2−q
v

(2b−1)q−2(b−1)
2−q ≤ 0.

(2.9)

Then the question is how to control the exponent of v in order that the absorption
becomes dominent for large v, and this necessitates,

(2b− 1)q − 2(b− 1)

2− q
≤ (p− 1)b+ 1⇐⇒ q ≤ 2p

p+ 1
.

Notice that the condition is independent of b. We fix

b =
2

(N − 1)(p− 1)
⇐⇒ (p− 1)b+ 1 =

N + 1

N − 1
,

which is the removability threshold for boundary isolated singularities of solutions
of the Emden-Fowler equation. With this choice the last problem is to control the

sign of the coefficient of |∇v|
2

v

(i) If p > N+1
N−1 , q < 2p

p+1 , we choose ε =
(

2(1−b)
Mqbq−1

) q
2

and (2.9) is transformed into

−∆v +
(N − 1)(p− 1)

4
v
N+1
N−1 ≤ A. (2.10)

By a result of Gmira-Véron [15], v remains bounded and the conclusion follows by
a suitable choice of test functions and standard regularity results [14].

(ii) In the case p > N+1
N−1 , q = 2p

p+1 , we have the same choice of b, but a more refined
choice of ε in order to take care of M .

(iii) In the case p = N+1
N−1 , q < N+1

N , we use (2.6) to improve the estimate (2.7), and
then by iterations to derive the boundedness of u. This is detailed in [8]. �

Theorem 2.1 can be extended to more general boundary singular sets.

Theorem 2.2 Assume p > N+1
N−1 and N+1

N−1 < r < p. If one of the following condi-
tions is satisfied:
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(i) either q = 2p
p+1 and

M < m∗∗r := (p+ 1)

(
p− r
p(r − 1)

) p
p+1

, (2.11)

(ii) or 1 < q < 2p
p+1 , r ≤ 3 and M is arbitrary.

Then if K ⊂ ∂Ω is a compact set such that cap∂Ω
2
r
,r′

(K) = 0, any solution u of

Lp,q,Mu = 0 in Ω, u = 0 in ∂Ω \K. (2.12)

is identically 0.

Proof. The principle of the proof is somewhat similar: we set u = vb for some
b ∈ (0, 1) and we reduce (2.12) to an inequality of type

−∆v + C1v
r ≤ C2 in Ω, v = 0 on ∂Ω \K, (2.13)

with C1, C2 > 0. Since cap∂Ω
2
r
,r′

(K) = 0, it follows by the removability theorem proved

in [18] that v is bounded from above and the result is easily obtained by a suitable
choice of test functions. �

3 Measure data problems

The natural space of test functions for analysing boundary value problems is X(Ω)
already defined in (2.3).

Definition 3.1 Let µ ∈M(∂Ω) and p, q ≥ 1. A Borel function u defined in Ω is a
weak solution of

−∆u+ |u|p−1u−M |∇u|q = 0 in Ω
u = µ in ∂Ω,

(3.1)

if u ∈ L1(Ω) ∩ Lpρ(Ω), ∇u ∈ Lqρ(Ω) and∫
Ω

(
−u∆ζ + (|u|p−1u−M |∇u|q)ζ

)
dx = −

∫
∂Ω

∂ζ

∂n
dµ for all ζ ∈ X(Ω). (3.2)

The next two problems in which µ is a Radon measure on ∂Ω are naturally associated
to (3.1).

1- The Emden-Fowler equation

−∆v + |v|p−1v = 0 in Ω
v = µ in ∂Ω.

(3.3)
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2- The Riccatti equation

−∆w −M |∇w|q = 0 in Ω
w = µ in ∂Ω.

(3.4)

It is proved in [18] that (3.3) admits a solution, necessarily unique, if and only if

For any Borel set E ⊂ ∂Ω, cap∂Ω
2
p
,p′

(E) = 0 =⇒ |µ|(E) = 0, (3.5)

Concerning (3.4) it is proved in [9] that there exists a solution if, for some C > 0, µ
satisfies

For any Borel set E ⊂ ∂Ω, |µ|(E) ≤ Ccap∂Ω
2−q
q
,q′

(E). (3.6)

Combining these two results we prove the following.

Theorem 3.2 Let p > 1, 1 < q < 2 and µ be a nonnegative Radon measure on ∂Ω
which satisfies

µ(E) ≤ C min

{
cap∂Ω

2−q
q
,q′

(E), cap∂Ω
2
p
,p′

(E)

}
for any Borel set E ⊂ ∂Ω, (3.7)

for some C > 0. Then there exists c0 > 0 such that for any 0 < c ≤ c0 there
exists a nonnegative weak solution of (3.2) with boundary data cµ. Furthermore the
boundary trace of u is the measure cµ.

Remark. No condition involving cap∂Ω
2
p
,p′

(resp. cap∂Ω
2−q
q
,q′

) are needed if 1 < p < N+1
N−1

(resp. 1 < q < N+1
N ) because of the Sobolev-Morrey imbedding theorem.

Abridged proof. Since the positive solution vµ of (3.3) is a subsolution of Lp,q,Mu = 0
and is smaller than any solution wµ of (3.4) which is a supersolution of Lp,q,Mu = 0,

it follows by [11] that there exists a W 1,2
loc (Ω)-function u which satisfies vµ ≤ u ≤ wµ

in Ω and
Lp,q,Mu = 0 in Ω. (3.8)

This u is a C1 function. Consequently, by the sandwich principle,

lim
δ→0

∫
ρ(x)=δ

wµZdS(x) =

∫
∂Ω
Zdµ = lim

δ→0

∫
ρ(x)=δ

vµZdS(x) = lim
δ→0

∫
ρ(x)=δ

uZdS(x),

(3.9)
for all Z ∈ C(Ω), Z ≥ 0. The restriction Z ≥ 0 can be dropped and this implies
that u admits a boundary trace in the dynamical definition of the boundary trace
[19]. Therefore we denote u = uµ. In order to assert that uµ is a weak solution in
the sense of Definition 3.1, we need some estimates. We denote by PΩ[ . ] the Poisson
operator in Ω.
1- Estimate on solutions: there holds

vµ ≤ PΩ[µ] ≤ wµ ≤ cPΩ[µ],
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see [9], and
0 ≤ vµ ≤ uµ ≤ wµ ≤ cPΩ[µ].

If µ satisfies the condition (3.6), there exists C ′ > 0 such that for 0 < c ≤ C ′ there
exists a nonnegative solution z ∈ L1(Ω) ∩ Lpρ(Ω) to

−∆z − zp = 0 in Ω
z = cµ in ∂Ω,

(3.10)

(see [3]). It clearly satisfies cPΩ[µ] ≤ z. Then wµ ∈ Lpρ(Ω) =⇒ uµ ∈ Lpρ(Ω).

For the gradient, set φ = GΩ[upµ], then φ ≥ 0 and

−∆(uµ + φ) = |∇uµ|q ≥ 0.

By Doob’s theorem,

−∆(uµ + φ) ∈ L1
ρ(Ω) =⇒ |∇uµ| ∈ Lqρ(Ω).

Since uµ ∈ Lpρ(Ω), |∇uµ| ∈ Lqρ(Ω) and uµ has boundary trace µ, it is straightforward
to prove that it is a weak solution. �

The condition (3.7) can be simplified in most of the case by using classical results
on Bessel capacities [1] which endow the general form

cap∂Ω
β,b(E) ≤ c

(
cap∂Ω

α,a(E)
)θ

for all Borel set E ⊂ ∂Ω,

under suitable conditions involving a, p > 1, α, β > 0 and θ ≥ 1. We prove the two
following corollaries,

Corollary 3.3 Assume p ≥ N+1
N−1 and 2p

p+1 ≤ q < 2. If µ is a nonnegative Radon
measure on ∂Ω which satisfies, for some C > 0,

µ(E) ≤ Ccap∂Ω
2−q
q
,q′

(E) for all Borel set E ⊂ ∂Ω, (3.11)

then the conclusions of Theorem 3 hold.

Similarly

Corollary 3.4 Assume N+1
N ≤ q < 2p

p+1 . If µ is a nonnegative Radon measure on
∂Ω such that for some constant C > 0, there holds for any Borel set E ⊂ ∂Ω,

µ(E) ≤ Ccap∂Ω
2
p
,p′

(E), (3.12)

then the conclusions of Theorem 3 hold.

Remark. Notice that by Corollary 1, Corollary 2 and the Remark after Theorem 3
we cover the full range (p, q) ∈ (1,∞)×(1, 2) and show that only one Bessel capacity
is involved.
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4 Separable solutions

Separable solutions of (1.1) are expressed in spherical coordinates x = (r, σ) in
RN ∼ R+ × SN−1 under the form

u(x) = u(r, s) = r−αω(s).

For equation (1.1), the existence of such solutions in a cone CS := (0,∞) × S
generated by a spherical domain S ⊆ SN−1 , imposes q = 2p

p+1 and α = 2
p−1 . Then ω

satisfies
Sp,Mω := −∆′ω + α(N − 2− α)ω + |ω|p−1ω

−M
(
α2ω2 + |∇′ω|2

) p
p+1 = 0 in S,

(4.1)

where ∆′ is the Laplace-Beltrami operator on SN−1.

1- If S = SN−1 positive solutions are unique and constant. The problem is com-
pletely solvable.

2- If we are dealing with boundary singularities, the model case is S = SN−1
+ and

the problem of boundary isolated singularities becomes

Sp,Mω = 0 in SN−1
+ and ω = 0 on ∂SN−1

+ . (4.2)

When M = 0 it is proved in [15] that there exists no positive solution if p ≥ N+1
N−1 .

Our main result is the following,

Theorem 4.1 There exists a positive solution ω to problem (4.2) if one of the fol-
lowing conditions is satisfied:

(i) either 1 < p < N+1
N−1 and M ≥ 0,

(ii) or p = N+1
N−1 and M > 0,

(iii) or 1 < p < 3 or p > N+1
N−1 , and M ≥MN,p for some explicit value MN,p > 0.

Abridged proof. Existence is obtained by construction of supersolutions (actually
large enough constants) and subsolutions under the form δφ1 where φ1 is the first
eigenfunction of −∆′ in W 1,2

0 (SN−1) and δ > 0 is small enough. Thus Sp,M (δφ1) ≤ 0
and existence follows again by [11]. �

The existence result (iii) is rather sharp since

Theorem 4.2 Let p > N+1
N−1 . If M ≤ m∗∗, defined by (2.5), there exists no positive

solution ω to problem (4.2).

The proof is delicate and based upon the transformation ω = ηb, b > 0.
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5 Singular solutions

In the subcritical case 1 < p < N+1
N−1 , 0 < q < N+1

N , then for any M > 0 and k > 0
there exist minimal fundamental solutions that are positive solutions of (1.1) in Ω,
vanishing on ∂Ω \ {0} and such that

lim
x→0

uk(x)

PΩ(x)
= k. (5.1)

They are solutions of Lp,q,Mu = 0 in Ω such that u = kδ0 on ∂Ω.
The correspondence k 7→ uk is increasing (between minimal solutions since unique-
ness may not hold) and there holds

lim
x→0

u∞(x)

PΩ(x)
=∞. (5.2)

Since the functions uk are uniformly locally bounded from above in Ω \ {0} by
estimate (2.6), there exists u∞ = lim

k→∞
uk.

In order to characterise u∞ we introduce the following problem,

−∆′ψ + α(N − 2− α)ψ + |ψ|p−1ψ = 0 in SN−1
+

ψ = 0 in ∂SN−1
+ .

(5.3)

Existence and uniqueness of a positive solution of (5.3) when 1 < q < N+1
N−1 has been

proved in [15]. In order to describe the singularity at 0, we assume that ∂RN+ ∼ RN−1

is the tangent hyperplane to ∂Ω at 0 and the normal vector eN is the inner unit
normal vector to Ω at 0. We will say that Ω is in normal situation at 0. Our main
result concerning the behaviour of a positive solution near an isolated singularity on
the boundary is the following.

Theorem 5.1 Let Ω be a smooth C2 domain with 0 ∈ ∂Ω in normal situation at
0, 1 < p < N+1

N−1 , 1 < q < N+1
N and M > 0. Assume that u is a positive function

satisfying of (2.1).

1- If 1 < q < 2p
p+1 , then

(i) either
lim
r→0

rαu(r, .) = ψ locally uniformly on SN−1
+ , (5.4)

where ψ is the unique positive solution of (5.3),
(ii) or there exists k ≥ 0 such that (5.1) holds. If k = 0, then u ≡ 0 in Ω.

2- If q = 2p
p+1 , then

(i) either u ≥ u∞ and

ψ ≤ lim inf
r→0

rαu(r, .) ≤ lim sup
r→0

rαu(r, .) = ω locally uniformly on SN−1
+ , (5.5)

where ω is the maximal positive solution of (4.2),
(ii) or the statement (ii) in case 1 holds.
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Proof. The proof is lengthy and use the reduction of the problem to a quasi-autonomous
second order equation as it was done in [15]. �.

Remark. In case 1-(i) u = u∞ is the unique positive solution of (1.1) vanishing on
∂Ω \ {0} and satisfying (5.2).

If 2p
p+1 < q < p the blow-up is modelled by the eikonal equation (1.4). The

blow-up rate is governed by r−γ where the exponent γ is

γ =
q

p− q
.

Notice that in this range γ > α. This equation is essentially isotropic, hence it is
difficult to construct singular solutions vanishing on the boundary except one point.
By a delicate construction with sub and super solutions, we prove:

Theorem 5.2 Assume M > 0, p > 1 and 2p
p+1 < q < min{2, p}. Then there exists

a positive solution u of (1.1) in RN
+, which vanishes on ∂RN

+ \ {0} such that

c3φ1(σ)r−γ ≤ u(r, s) ≤ c4 max
{
r−α,M

1
p−q r−γ

}
, (5.6)

for all (r, s) ∈ (0, r∗) × SN−1
+ , for some r∗ ∈ (0,∞] and where c3, c4 > 0 depend

N, p, q. If Nq > (N − 1)p, then r∗ =∞.

The result can be adapted to a solution in a bounded domain Ω with an isolated
singularity at the point 0 ∈ ∂Ω.

6 Open problems

Problem 1. It is proved by Bidaut-Véron, Garcia-Huidobro, Véron that if

max{ N

N − 1
,

2p

p+ 1
} < q < min{2, p} and M > 0,

there exist infinitely many radial solutions of (1.1) in BR \ {0} for small R, which
satisfy

u(r) = ξMr
−β(1 + o(1)) as r → 0, (6.1)

where

β =
2− q
q − 1

and ξM =
1

β

(
(N − 1)q −N
M(p− 1)

) 1
p−1

. (6.2)

These solutions present the property that their blow-up is smaller than the one of
the explicit radial separable solution. It would be interesting to construct similar
solutions of (1.1) in RN

+ (or more likely B+
R), vanishing on ∂RN \ {0}.
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Problem 2. Is it possible to define a boundary trace for any positive solution of (1.1)
in RN

+, noting the fact that such a result holds separately for positive solutions of
(1.3) and (1.5) ? Notice that if u ∈ Lpρ(Ω), then the theory of nonnegative super-
harmonic, up to a perturbation in L1

ρ(Ω) functions [12], applies: thus ∇u ∈ Lqρ(Ω)
and there exists a nonnegative Radon measure µ such that u solves (3.1). Next, if
∇u ∈ Lqρ(Ω then the theory of boundary trace of positive solutions of Emden-Fowler
equation as it is developed in [17] can be easily adapted. In that case there exists a
closed set S ⊂ ∂Ω and a nonnegative Radon measure µ in R := ∂Ω \ S such that

lim
τ→0

∫
{x:ρ(x)=τ}∩Bε(x)

udS(x) =∞, (6.3)

for all x ∈ S and ε > 0, and

lim
τ→0

∫
{x:ρ(x)=τ}

ζ(x)udS(x) =

∫
R
ζdµ (6.4)

for all ζ ∈ C(Ω) vanishing in a neighborhood of S. The difficulty for equation (1.1)
comes from the situation where at some boundary points x there holds∫

Ω∩Bε(x)
upρdx =

∫
Ω∩Bε(x)

|∇u|qρdx =∞, (6.5)

for some ε > 0.

Problem 3. Are the weak solutions of the Dirichlet problem with measure boundary
data (3.1) unique ? Note that there are a few uniqueness results for solutions with
a boundary isolated singularities which can be obtained by using scaling techniques
(under geometric restrictions on the domain).
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