The six-functor formalism for rigid analytic motives - Archive ouverte HAL
Article Dans Une Revue Forum of Mathematics, Sigma Année : 2022

The six-functor formalism for rigid analytic motives

Résumé

Abstract We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud’s approach to rigid analytic geometry.
Fichier principal
Vignette du fichier
AGV_0608.pdf (1.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03907392 , version 1 (20-12-2022)

Identifiants

Citer

Joseph Ayoub, Martin Gallauer, Alberto Vezzani. The six-functor formalism for rigid analytic motives. Forum of Mathematics, Sigma, 2022, 10, pp.e61. ⟨10.1017/fms.2022.55⟩. ⟨hal-03907392⟩
28 Consultations
68 Téléchargements

Altmetric

Partager

More