Author Identification Using Latent Dirichlet Allocation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Author Identification Using Latent Dirichlet Allocation

Résumé

We tackle the task of author identification at PAN 2015 through a Latent Dirichlet Allocation (LDA) model. By using this method, we take into account the vocabulary and context of words at the same time, and after a statistical process find to what extent the relations between words are given in each document; processing a set of documents by LDA returns a set of distributions of topics. Each distribution can be seen as a vector of features and a fingerprint of each document within the collection. We used then a Naïve Bayes classifier on the obtained patterns with different performances. We obtained state-of-the-art performance for English, overtaking the best FS score reported in PAN 2015, while obtaining mixed results for other languages.
Fichier principal
Vignette du fichier
cicling.pdf (275.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03907314 , version 1 (20-12-2022)

Identifiants

Citer

Hiram Calvo, Ángel Hernández-Castañeda, Jorge Garcia Flores. Author Identification Using Latent Dirichlet Allocation. 18th International Conference on Computational Linguistics and Intelligent Text Processing, CICLing 2017, Apr 2017, Budapest (Hungary)., Hungary. pp.303-312, ⟨10.1007/978-3-319-77116-8_22⟩. ⟨hal-03907314⟩
19 Consultations
66 Téléchargements

Altmetric

Partager

More