Relativistic correlated electronic structure and the calculation of accurate ground-state, core and valence properties of heavy element species
Résumé
Accurate electronic structure calculations have become an indispensable tool to understand the molecular properties of heavy and superheavy elements. Such approaches help make sense of the underlying complex physical processes probed by experiments, or in the case such experiments are unfeasible due to the heavy elements’ radiotoxicity.
In this presentation I will outline our contributions to developments of coupled cluster approaches based on four-component Hamiltonians for ground-state properties as well as for valence and core excitation and ionization spectra [1-4], and their application to investigating heavy and super heavy elements [2, 3, 5].
Furthermore, I will outline how these can be combined with more approximate approaches through embedding theories [6], to enable the investigation of heavy element species in complex environments such as in solution.
Funding: ANR-11-LABX-0005-01, ANR-19-CE29-0019, ANR-16-IDEX-0004, DE-AC05- 00OR22725.
References [1] J. Pototschnig et al., J. Chem. Theory Comput. (2021) 17, 5509 10.1021/acs.jctc.1c00260
[2] X. Yuan, L. Visscher, A. S. P. Gomes, J. Chem. Phys. (in press) (2022). 10.1063/5.0087243
[3] A. Shee, T. Saue, L. Visscher, A. S. P. Gomes, J. Chem. Phys. (2018) 149, 174113 10.1063/1.5053846
[4] L. Halbert, M. L. Vidal, A. Shee, S. Coriani, A. S. P. Gomes, J. Chem. Theory Comput. (2021) 17, 3583 10.1021/acs.jctc.0c01203
[5] S. Kervazo, F. Réal, F. Virot, A. S. P. Gomes, V. Vallet, Inorg. Chem. (2019) 58, 14507 10.1021/acs.inorgchem.9b02096
[6] Y. Bouchafra, A. Shee, F. Réal, V. Vallet, A. S. P. Gomes, Phys. Rev. Lett. (2018) 121, 266001 10.1103/PhysRevLett.121.266001
In this presentation I will outline our contributions to developments of coupled cluster approaches based on four-component Hamiltonians for ground-state properties as well as for valence and core excitation and ionization spectra [1-4], and their application to investigating heavy and super heavy elements [2, 3, 5].
Furthermore, I will outline how these can be combined with more approximate approaches through embedding theories [6], to enable the investigation of heavy element species in complex environments such as in solution.
Funding: ANR-11-LABX-0005-01, ANR-19-CE29-0019, ANR-16-IDEX-0004, DE-AC05- 00OR22725.
References [1] J. Pototschnig et al., J. Chem. Theory Comput. (2021) 17, 5509 10.1021/acs.jctc.1c00260
[2] X. Yuan, L. Visscher, A. S. P. Gomes, J. Chem. Phys. (in press) (2022). 10.1063/5.0087243
[3] A. Shee, T. Saue, L. Visscher, A. S. P. Gomes, J. Chem. Phys. (2018) 149, 174113 10.1063/1.5053846
[4] L. Halbert, M. L. Vidal, A. Shee, S. Coriani, A. S. P. Gomes, J. Chem. Theory Comput. (2021) 17, 3583 10.1021/acs.jctc.0c01203
[5] S. Kervazo, F. Réal, F. Virot, A. S. P. Gomes, V. Vallet, Inorg. Chem. (2019) 58, 14507 10.1021/acs.inorgchem.9b02096
[6] Y. Bouchafra, A. Shee, F. Réal, V. Vallet, A. S. P. Gomes, Phys. Rev. Lett. (2018) 121, 266001 10.1103/PhysRevLett.121.266001