Rule Induction Partitioning Estimator: Design of an interpretable prediction algorithm - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Rule Induction Partitioning Estimator: Design of an interpretable prediction algorithm

Résumé

RIPE is a novel deterministic and easily understandable prediction algorithm developed for continuous and discrete ordered data. It infers a model, from a sample, to predict and to explain a real variable Y given an input variable X ∈ X (features). The algorithm extracts a sparse set of hyperrectangles r ⊂ X , which can be thought of as rules of the form If-Then. This set is then turned into a partition of the features space X of which each cell is explained as a list of rules with satisfied their If conditions. The process of RIPE is illustrated on simulated datasets and its efficiency compared with that of other usual algorithms.
Fichier principal
Vignette du fichier
1807.04602.pdf (347.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03905772 , version 1 (19-12-2022)

Identifiants

Citer

Vincent Margot, Jean-Patrick Baudry, Frédéric Guilloux, Olivier Wintenberger. Rule Induction Partitioning Estimator: Design of an interpretable prediction algorithm. International Conference on Machine Learning and Data Mining in Pattern Recognition, Jul 2018, New York (NY), United States. pp.288-301, ⟨10.1007/978-3-319-96133-0_22⟩. ⟨hal-03905772⟩
17 Consultations
40 Téléchargements

Altmetric

Partager

More