Certain Paracontact Metrics Satisfying the Critical Point Equation - Archive ouverte HAL
Article Dans Une Revue (Article De Synthèse) Communications in Mathematics Année : 2023

Certain Paracontact Metrics Satisfying the Critical Point Equation

Dhriti Patra
  • Fonction : Auteur
  • PersonId : 1208011
  • IdHAL : dhriti

Résumé

The aim of this paper is to study the CPE (Critical Point Equation) on some paracontact metric manifolds. First, we prove that if a para-Sasakian metric satisfies the CPE, then it is Einstein with constant scalar curvature -2n(2n+1). Next, we prove that if $(\kappa,\mu)$-paracontact metric satisfies the CPE, then it is locally isometric to the product of a flat $(n+1)$-dimensional manifold and $n$-dimensional manifold of negative constant curvature $-4$.
Fichier principal
Vignette du fichier
CiM-341-Patra.pdf (277.76 Ko) Télécharger le fichier

Dates et versions

hal-03904450 , version 1 (16-12-2022)
hal-03904450 , version 2 (02-02-2023)
hal-03904450 , version 3 (14-02-2023)

Licence

Identifiants

Citer

Dhriti Patra. Certain Paracontact Metrics Satisfying the Critical Point Equation. Communications in Mathematics, 2023, Volume 32 (2024), Issue 1, ⟨10.46298/cm.10549⟩. ⟨hal-03904450v3⟩
74 Consultations
471 Téléchargements

Altmetric

Partager

More