High spatial frequencies disrupt conscious visual recognition: evidence from an attentional blink paradigm
Résumé
In this article, we tested the respective importance of low spatial frequencies (LSF) and high spatial frequencies (HSF) for conscious visual recognition of emotional stimuli by using an attentional blink paradigm. Thirty-eight participants were asked to identify and report two targets (happy faces) embedded in a rapid serial visual presentation of distractors (angry faces). During attentional blink, conscious perception of the second target (T2) is usually altered when the lag between the two targets is short (200–500 ms) but is restored at longer lags. The distractors between T1 and T2 were either non-filtered (broad spatial frequencies, BSF), low-pass filtered (LSF), or high-pass filtered (HSF). Assuming that prediction abilities could be at the root of conscious visual recognition, we expected that LSF distractors could result in a greater disturbance of T2 reporting than HSF distractors. Results showed that both LSF and HSF play a role in the emergence of exogenous consciousness in the visual system. Furthermore, HSF distractors strongly affected T1 and T2 reporting irrespective of the lag between targets, suggesting their role for facial emotion processing. We discuss these results with regards to other models of visual recognition.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|