Phase transition and twinning in polycrystals probed by in situ high temperature 3D reciprocal space mapping - Archive ouverte HAL
Article Dans Une Revue Applied Physics Letters Année : 2022

Phase transition and twinning in polycrystals probed by in situ high temperature 3D reciprocal space mapping

Résumé

Polycrystalline materials exhibit physical properties that are driven by both the interatomic crystallographic structure as well as the nature and density of structural defects. Crystallographic evolutions driven by phase transitions and associated twinning process can be observed in situ in three-dimensional (3D) using monochromatic synchrotron radiation at very high temperatures (over 1000 C). This paper focuses on continuous measurements of the 3D-reciprocal space maps by high-resolution x-ray diffraction as a function of temperature along a phase transition process occurring between 1200 C and room temperature. These high precision measurements allow observing the reciprocal space node splitting and the evolution of the diffuse scattering signal around that node as a function of temperature. The capability of this experimental method is illustrated by direct in situ high temperature measurements of the 3D splitting of a reciprocal space node due to phase transition recorded on dense pure zirconia polycrystals.
Fichier principal
Vignette du fichier
PIMM_APL_ 2022_CASTELNAU.pdf (1.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03903558 , version 1 (16-12-2022)

Identifiants

Citer

Ravi Raj Purohit Purushottam Raj Purohit, Daniel Pepin Fowan, Elsa Thune, Stephan Arnaud, Gilbert Chahine, et al.. Phase transition and twinning in polycrystals probed by in situ high temperature 3D reciprocal space mapping. Applied Physics Letters, 2022, 121 (18), pp.181901. ⟨10.1063/5.0109058⟩. ⟨hal-03903558⟩
100 Consultations
61 Téléchargements

Altmetric

Partager

More