Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Optimization Année : 2024

Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems

Résumé

We leverage path differentiability and a recent result on nonsmooth implicit differentiation calculus to give sufficient conditions ensuring that the solution to a monotone inclusion problem will be path differentiable, with formulas for computing its generalized gradient. A direct consequence of our result is that these solutions happen to be differentiable almost everywhere. Our approach is fully compatible with automatic differentiation and comes with assumptions which are easy to check, roughly speaking: semialgebraicity and strong monotonicity. We illustrate the scope of our results by considering three fundamental composite problem settings: strongly convex problems, dual solutions to convex minimization problems and primal-dual solutions to min-max problems.
Fichier principal
Vignette du fichier
main.pdf (344.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03900339 , version 1 (15-12-2022)

Identifiants

Citer

Jérôme Bolte, Edouard Pauwels, Antonio José Silveti-Falls. Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems. SIAM Journal on Optimization, 2024, 34 (1), 27 p. ⟨10.1137/22M1541630⟩. ⟨hal-03900339⟩
419 Consultations
266 Téléchargements

Altmetric

Partager

More