VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN PROPER CAT(0) SPACES - Archive ouverte HAL
Article Dans Une Revue Journal of Geometric Analysis Année : 2024

VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN PROPER CAT(0) SPACES

Résumé

In this article, we develop a novel notion of viscosity solutions for first order Hamilton-Jacobi equations in proper CAT(0) spaces. The notion of viscosity is defined by taking test functions that are directionally differentiable and can be represented as a difference of two semiconvex functions. Under mild assumptions on the Hamiltonian, we recover the main features of viscosity theory for both the stationary and the time-dependent cases in this setting: the comparison principle and Perron's method. Finally, we show that this notion of viscosity coincides with classical one in R N and we give several examples of Hamilton-Jacobi equations in more general CAT(0) spaces covered by this setting.
Fichier principal
Vignette du fichier
JerhaouiZidani.pdf (624.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03899199 , version 1 (14-12-2022)

Identifiants

Citer

Othmane Jerhaoui, Hasnaa Zidani. VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN PROPER CAT(0) SPACES. Journal of Geometric Analysis, 2024, 34 (2), pp.53. ⟨10.1007/s12220-023-01484-7⟩. ⟨hal-03899199⟩
209 Consultations
198 Téléchargements

Altmetric

Partager

More