STACKING DISORDER IN PERIODIC MINIMAL SURFACES - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2021

STACKING DISORDER IN PERIODIC MINIMAL SURFACES

Résumé

We construct 1-parameter families of non-periodic embedded minimal surfaces of infinite genus in T × R, where T denotes a flat 2-tori. Each of our families converges to a foliation of T × R by T. These surfaces then lift to minimal surfaces in R 3 that are periodic in horizontal directions but not periodic in the vertical direction. In the language of crystallography, our construction can be interpreted as disordered stacking of layers of periodically arranged catenoid necks. Our work is motivated by experimental observations of twinning defects in periodic minimal surfaces, which we reproduce as special cases of stacking disorder.

Mots clés

Fichier principal
Vignette du fichier
twins.pdf (1 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03897973 , version 1 (14-12-2022)

Identifiants

Citer

Hao Chen, Martin Traizet. STACKING DISORDER IN PERIODIC MINIMAL SURFACES. SIAM Journal on Mathematical Analysis, 2021, 53 (1), pp.855--887. ⟨10.1137/20M1312137⟩. ⟨hal-03897973⟩
20 Consultations
37 Téléchargements

Altmetric

Partager

More