Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Neuron Année : 2018

Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways

Chia-Yu Yeh
  • Fonction : Auteur
Brent Asrican
  • Fonction : Auteur
Jonathan Moss
  • Fonction : Auteur
Luis Jhoan Quintanilla
  • Fonction : Auteur
Ting He
  • Fonction : Auteur
Xia Mao
  • Fonction : Auteur
Elias Gebara
  • Fonction : Auteur
Hechen Bao
  • Fonction : Auteur
Wei Lu
  • Fonction : Auteur
Nicolas Toni
  • Fonction : Auteur
Juan Song
  • Fonction : Auteur

Résumé

Mossy cells (MCs) represent a major population of excitatory neurons in the adult dentate gyrus, a brain region where new neurons are generated from radial neural stem cells (rNSCs) throughout life. Little is known about the role of MCs in regulating rNSCs. Here we demonstrate that MC commissural projections structurally and functionally interact with rNSCs through both the direct glutamatergic MC-rNSC pathway and the indirect GABAergic MC-local interneuron-rNSC pathway. Specifically, moderate MC activation increases rNSC quiescence through the dominant indirect pathway, while high MC activation increases rNSC activation through the dominant direct pathway. In contrast, MC inhibition or ablation leads to a transient increase of rNSC activation, but rNSC depletion only occurs after chronic ablation of MCs. Together, our study identifies MCs as a critical stem cell niche component that dynamically controls adult NSC quiescence and maintenance under various MC activity states through a balance of direct glutamatergic and indirect GABAergic signaling onto rNSCs.

Dates et versions

hal-03896715 , version 1 (13-12-2022)

Identifiants

Citer

Chia-Yu Yeh, Brent Asrican, Jonathan Moss, Luis Jhoan Quintanilla, Ting He, et al.. Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways. Neuron, 2018, 99 (3), pp.493-510.e4. ⟨10.1016/j.neuron.2018.07.010⟩. ⟨hal-03896715⟩
4 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More