The Berkovich realization for rigid analytic motives
Résumé
We prove that the functor associating to a rigid analytic variety the singular complex of the underlying Berkovich topological space is motivic, and defines the maximal Artin quotient of a motive. We use this to generalize Berkovich's results on the weight-zero part of the étale cohomology of a variety defined over a non-archimedean valued field.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|