A motivic version of the theorem of Fontaine and Wintenberger - Archive ouverte HAL
Article Dans Une Revue Compositio Mathematica Année : 2019

A motivic version of the theorem of Fontaine and Wintenberger

Résumé

We establish a tilting equivalence for rational, homotopy-invariant cohomology theories defined over non-archimedean analytic varieties. More precisely, we prove an equivalence between the categories of motives of rigid analytic varieties over a perfectoid field $K$ of mixed characteristic and over the associated (tilted) perfectoid field $K^{\flat }$ of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of $K$ and $K^{\flat }$ are isomorphic.
Fichier principal
Vignette du fichier
hal_FW.pdf (583.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03895748 , version 1 (13-12-2022)

Identifiants

Citer

Alberto Vezzani. A motivic version of the theorem of Fontaine and Wintenberger. Compositio Mathematica, 2019, 155 (1), pp.38-88. ⟨10.1112/S0010437X18007595⟩. ⟨hal-03895748⟩
16 Consultations
51 Téléchargements

Altmetric

Partager

More