Multidimensional Item Response Theory in the Style of Collaborative Filtering - Archive ouverte HAL
Article Dans Une Revue Psychometrika Année : 2022

Multidimensional Item Response Theory in the Style of Collaborative Filtering

Théorie de la réponse à l'item multidimensionnelle façon filtrage collaboratif

Résumé

This paper presents a machine learning approach to multidimensional item response theory (MIRT), a class of latent factor models that can be used to model and predict student performance from observed assessment data. Inspired by collaborative filtering, we define a general class of models that includes many MIRT models. We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model. This model evaluation process can be optimized using batching techniques, such that even sparse large-scale data can be analyzed efficiently. We illustrate our approach with simulated and real data, including an example from a massive open online course (MOOC). The high-dimensional model fit to this large and sparse dataset does not lend itself well to traditional methods of factor interpretation. By analogy to recommender-system applications, we propose an alternative "validation" of the factor model, using auxiliary information about the popularity of items consulted during an open-book exam in the course.
Fichier principal
Vignette du fichier
CF_IRTv3.pdf (464.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03895623 , version 1 (11-01-2023)

Licence

Identifiants

Citer

Yoav Bergner, Peter Halpin, Jill-Jênn Vie. Multidimensional Item Response Theory in the Style of Collaborative Filtering. Psychometrika, In press, 87 (1), pp.266-288. ⟨10.1007/s11336-021-09788-9⟩. ⟨hal-03895623⟩
33 Consultations
128 Téléchargements

Altmetric

Partager

More