Whitney edge elements and the Runge phenomenon - Archive ouverte HAL
Article Dans Une Revue Journal of Computational and Applied Mathematics Année : 2023

Whitney edge elements and the Runge phenomenon

Résumé

It is well known that Lagrange interpolation based on equispaced nodes can yield poor results. Oscillations may appear when using high degree polynomials. For functions of one variable, the most celebrated example has been provided by Carl Runge in 1901, who showed that higher degrees do not always improve interpolation accuracy. His example was then extended to multivariate calculus and in this work we show that it is meaningful, in an appropriate sense, also for Whitney edge elements, namely for differential 1-forms.
Fichier principal
Vignette du fichier
RungeSep22.pdf (423.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03893138 , version 1 (10-12-2022)

Identifiants

Citer

Ana Alonso Rodríguez, Ludovico Bruni Bruno, Francesca Rapetti. Whitney edge elements and the Runge phenomenon. Journal of Computational and Applied Mathematics, 2023, 427, pp.115117. ⟨10.1016/j.cam.2023.115117⟩. ⟨hal-03893138⟩
106 Consultations
223 Téléchargements

Altmetric

Partager

More