Tensor rectifiable G-flat chains - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

Tensor rectifiable G-flat chains

Résumé

A rigidity result for normal rectifiable $k$-chains in $\mathbb{R}^n$ with coefficients in an Abelian normed group is established. Given some decompositions $k=k_1+k_2$, $n=n_1+n_2$ and some rectifiable $k$-chain $A$ in $\mathbb{R}^n$, we consider the properties: (1) The tangent planes to $\mu_A$ split as $T_x\mu_A=L^1(x)\times L^2(x)$ for some $k_1$-plane $L^1(x)\subset\mathbb{R}^{n_1}$ and some $k_2$-plane $L^2(x)\subset\mathbb{R}^{n_2}$. (2) $A=A_{\vert\Sigma^1\times\Sigma^2}$ for some sets $\Sigma^1\subset\mathbb{R}^{n_1}$, $\Sigma^2\subset\mathbb{R}^{n_2}$ such that $\Sigma^1$ is $k_1$-rectifiable and $\Sigma^2$ is $k_2$-rectifiable (we say that $A$ is $(k_1,k_2)$-rectifiable). The main result is that for normal chains, (1) implies (2), the converse is immediate. In the proof we introduce the new groups of tensor flat chains (or $(k_1,k_2)$-chains) in $\mathbb{R}^{n_1}\times\mathbb{R}^{n_2}$ which generalize Fleming's $G$-flat chains. The other main tool is White's rectifiable slices theorem. We show that on the one hand any normal rectifiable chain satisfying~(1) identifies with a normal rectifiable $(k_1,k_2)$-chain and that on the other hand any normal rectifiable $(k_1,k_2)$-chain is $(k_1,k_2)$-rectifiable.
Fichier principal
Vignette du fichier
TensorFlatChains.pdf (569.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03890966 , version 1 (08-12-2022)

Identifiants

Citer

Michael Goldman, Benoît Merlet. Tensor rectifiable G-flat chains. 2023. ⟨hal-03890966⟩
55 Consultations
37 Téléchargements

Altmetric

Partager

More