A quantitative Neumann Lemma for finitely generated groups - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

A quantitative Neumann Lemma for finitely generated groups

Elia Gorokhovsky
  • Fonction : Auteur
Omer Tamuz
  • Fonction : Auteur

Résumé

We study the coset covering function $C(r)$ of an infinite, finitely generated group: the number of cosets of infinite index subgroups needed to cover the ball of radius r. We show that $C(r)$ is of order at least $\sqrt{r}$ for all groups. Moreover, we show that $C(r)$ is linear for a class of amenable groups including virtually nilpotent and polycyclic groups, and that it is exponential for property (T) groups.
Fichier principal
Vignette du fichier
switching_elements.pdf (313.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03886679 , version 1 (06-12-2022)
hal-03886679 , version 2 (05-07-2023)

Identifiants

  • HAL Id : hal-03886679 , version 1

Citer

Elia Gorokhovsky, Nicolás Matte Bon, Omer Tamuz. A quantitative Neumann Lemma for finitely generated groups. 2022. ⟨hal-03886679v1⟩

Partager

More