Discrete quantum harmonic oscillator and kravchuk transform - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2024

Discrete quantum harmonic oscillator and kravchuk transform

Résumé

We consider a particular discretization of the harmonic oscillator which admits an orthogonal basis of eigenfunctions called Kravchuk functions possessing appealing properties from the numerical point of view. We analytically prove the almost second-order convergence of these discrete functions towards Hermite functions, uniformly for large numbers of modes. We then describe an efficient way to simulate these eigenfunctions and the corresponding transformation. We finally show some numerical experiments corroborating our different results.
Fichier principal
Vignette du fichier
kravchuk_final.pdf (954.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03885282 , version 1 (05-12-2022)

Licence

Identifiants

Citer

Quentin Chauleur, Erwan Faou. Discrete quantum harmonic oscillator and kravchuk transform. ESAIM: Mathematical Modelling and Numerical Analysis, 2024, 58 (6), pp.2155-2186. ⟨10.1051/m2an/2024001⟩. ⟨hal-03885282⟩
118 Consultations
121 Téléchargements

Altmetric

Partager

More