Discrete quantum harmonic oscillator and kravchuk transform - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2022

Discrete quantum harmonic oscillator and kravchuk transform

Abstract

We consider a particular discretization of the harmonic oscillator which admits an orthogonal basis of eigenfunctions called Kravchuk functions possessing appealing properties from the numerical point of view. We analytically prove the almost second-order convergence of these discrete functions towards Hermite functions, uniformly for large numbers of modes. We then describe an efficient way to simulate these eigenfunctions and the corresponding transformation. We finally show some numerical experiments corroborating our different results.
Fichier principal
Vignette du fichier
kravchuk_final.pdf (954.75 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03885282 , version 1 (05-12-2022)

Identifiers

Cite

Quentin Chauleur, Erwan Faou. Discrete quantum harmonic oscillator and kravchuk transform. 2022. ⟨hal-03885282⟩
61 View
56 Download

Altmetric

Share

Gmail Facebook X LinkedIn More