INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs

Anthony Bardou

Résumé

WLANs, which have overtaken wired networks to become the primary means of connecting devices to the Internet, are prone to performance issues due to the scarcity of space in the radio spectrum. As a response, IEEE 802.11ax and subsequent amendments aim at increasing the spatial reuse of a radio channel by allowing the dynamic update of two key parameters in wireless transmission: the transmission power (TX_POWER) and the sensitivity threshold (OBSS_PD). In this paper, we present INSPIRE, a distributed online learning solution performing local Bayesian optimizations based on Gaussian processes to improve the spatial reuse in WLANs. INSPIRE makes no explicit assumptions about the topology of WLANs and favors altruistic behaviors of the access points, leading them to find adequate configurations of their TX_POWER and OBSS_PD parameters for the "greater good" of the WLANs. We demonstrate the superiority of INSPIRE over other state-of-the-art strategies using the ns-3 simulator and two examples inspired by real-life deployments of dense WLANs. Our results show that, in only a few seconds, INSPIRE is able to drastically increase the quality of service of operational WLANs by improving their fairness and throughput.
Fichier principal
Vignette du fichier
MSWIM22_CameraReady_NoCopyright.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03884784 , version 1 (05-12-2022)

Identifiants

Citer

Anthony Bardou, Thomas Begin. INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs. MSWiM '22: Int'l ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems, 2022, Montreal, Quebec, Canada. pp.133-142, ⟨10.1145/3551659.3559050⟩. ⟨hal-03884784⟩
35 Consultations
48 Téléchargements

Altmetric

Partager

More