Absolute measurement of the relativistic magnetic dipole transition in He-like sulfur - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

Absolute measurement of the relativistic magnetic dipole transition in He-like sulfur

Résumé

We have made the first absolute, reference-free measurement of the 1s2s 3 S1 → 1s 2 1 S0 relativistic magnetic dipole transition in He-like sulfur. The highly-charged S ions were provided by an electron-cyclotron resonance ion source, and the x rays were analysed with a high-precision double crystal spectrometer. A transition energy of 2430.3685(97) eV was obtained, and is compared to most advanced bound state quantum electrodynamics calculations, providing an important test of two-electron QED effects and precision atomic structure methods in medium-Z species. Thanks to the extremely narrow natural linewidth of this transition, and to the large dispersion of the spectrometer at this energy, a complementary study was also performed evaluating the impact of different silicon crystal atomic form factor models in the transition energy analysis. We find no significant dependence on the model used to determine the transition energy.
Fichier principal
Vignette du fichier
main.pdf (7.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03884754 , version 1 (05-12-2022)
hal-03884754 , version 2 (27-03-2023)

Identifiants

Citer

Jorge Felizardo Dias Cunha Machado, Nancy Paul, Gabrielle Soum-Sidikov, Louis Duval, Stéphane Macé, et al.. Absolute measurement of the relativistic magnetic dipole transition in He-like sulfur. 2022. ⟨hal-03884754v1⟩

Collections

CEA INSP-E10
171 Consultations
89 Téléchargements

Altmetric

Partager

More