QUANTUM ERGODICITY FOR COMPACT QUOTIENTS OF IN THE BENJAMINI–SCHRAMM LIMIT - Archive ouverte HAL
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2021

QUANTUM ERGODICITY FOR COMPACT QUOTIENTS OF IN THE BENJAMINI–SCHRAMM LIMIT

Jasmin Matz

Résumé

Abstract We study the limiting behavior of Maass forms on sequences of large-volume compact quotients of $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$ , $d\ge 3$ , whose spectral parameter stays in a fixed window. We prove a form of quantum ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.
Fichier non déposé

Dates et versions

hal-03884137 , version 1 (05-12-2022)

Identifiants

Citer

Farrell Brumley, Jasmin Matz. QUANTUM ERGODICITY FOR COMPACT QUOTIENTS OF IN THE BENJAMINI–SCHRAMM LIMIT. Journal of the Institute of Mathematics of Jussieu, 2021, pp.1-41. ⟨10.1017/S147474802100058X⟩. ⟨hal-03884137⟩
31 Consultations
0 Téléchargements

Altmetric

Partager

More