Lower bounds for Maass forms on semisimple groups - Archive ouverte HAL
Article Dans Une Revue Compositio Mathematica Année : 2020

Lower bounds for Maass forms on semisimple groups

Simon Marshall
  • Fonction : Auteur

Résumé

Let $G$ be an anisotropic semisimple group over a totally real number field $F$ . Suppose that $G$ is compact at all but one infinite place $v_{0}$ . In addition, suppose that $G_{v_{0}}$ is $\mathbb{R}$ -almost simple, not split, and has a Cartan involution defined over $F$ . If $Y$ is a congruence arithmetic manifold of non-positive curvature associated with $G$ , we prove that there exists a sequence of Laplace eigenfunctions on $Y$ whose sup norms grow like a power of the eigenvalue.

Dates et versions

hal-03884135 , version 1 (05-12-2022)

Identifiants

Citer

Farrell Brumley, Simon Marshall. Lower bounds for Maass forms on semisimple groups. Compositio Mathematica, 2020, 156 (5), pp.959-1003. ⟨10.1112/S0010437X20007125⟩. ⟨hal-03884135⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

More