Growth of hypercyclic functions: a continuous path between $\mathcal{U}$-frequent hypercyclicity and hypercyclicity - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

Growth of hypercyclic functions: a continuous path between $\mathcal{U}$-frequent hypercyclicity and hypercyclicity

Augustin Mouze
  • Fonction : Auteur
  • PersonId : 1073616
Vincent Munnier
  • Fonction : Auteur

Résumé

We are interested in the optimal growth in terms of $L^p$-averages of hypercyclic and $\mathcal{U}$-frequently hypercyclic functions for some weighted Taylor shift operators acting on the space of analytic function on the unit disc. We unify the results obtained by considering intermediate notions of upper frequent hypercyclicity between the $\mathcal{U}$-frequent hypercyclicity and the hypercyclicity.
Fichier principal
Vignette du fichier
UpperFHC.pdf (313.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03882883 , version 1 (06-12-2022)
hal-03882883 , version 2 (21-04-2023)

Identifiants

  • HAL Id : hal-03882883 , version 2

Citer

Augustin Mouze, Vincent Munnier. Growth of hypercyclic functions: a continuous path between $\mathcal{U}$-frequent hypercyclicity and hypercyclicity. 2023. ⟨hal-03882883v2⟩
36 Consultations
41 Téléchargements

Partager

More