Acoustic and gravity waves in the ocean: a new derivation of a linear model from the compressible Euler equation - Archive ouverte HAL
Pré-Publication, Document De Travail (Working Paper) Année : 2022

Acoustic and gravity waves in the ocean: a new derivation of a linear model from the compressible Euler equation

Résumé

In this paper we construct an accurate linear model describing the propagation of both acoustic and gravity waves in water. This original model is obtained by the linearization of the compressible Navier-Stokes equations with free surface written in Lagrangian coordinates accounting for vertical variations of the background temperature and density. The models from the literature can be obtained from our model through two asymptotic analysis, one for the incompressible regime and one for the acoustic regime. We also propose a method to write the model in Eulerian coordinates. Our model includes many physical properties, such as the existence of internal gravity waves or the variation of the sound speed with depth.
Fichier principal
Vignette du fichier
AcousticWaveOcean.pdf (597.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03880423 , version 1 (01-12-2022)
hal-03880423 , version 2 (24-02-2023)
hal-03880423 , version 3 (23-06-2023)
hal-03880423 , version 4 (02-08-2023)

Identifiants

  • HAL Id : hal-03880423 , version 1

Citer

Juliette Dubois, Sébastien Imperiale, Anne Mangeney, François Bouchut, Jacques Sainte-Marie. Acoustic and gravity waves in the ocean: a new derivation of a linear model from the compressible Euler equation. 2022. ⟨hal-03880423v1⟩
354 Consultations
239 Téléchargements

Partager

More