Describing free ω-categories - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Describing free ω-categories

Résumé

The notion of pasting diagram is central in the study of strict ω-categories: it encodes a collection of morphisms for which the composition is defined unambiguously. As such, we expect that a pasting diagram itself describes an ω-category which is freely generated by the cells constituting it. In practice, it seems very difficult to characterize this notion in full generality and various definitions have been proposed with the aim of being reasonably easy to compute with, and including common examples (e.g. cubes or orientals). One of the most tractable such structure is parity complexes, which uses sets of cells in order to represent the boundaries of a cell. In this work, we first show that parity complexes do not satisfy the aforementioned freeness property by providing a mechanized proof in Agda. Then, we propose a new formalism that satisfies the freeness property and which can be seen as a corrected version of parity complexes.
Fichier principal
Vignette du fichier
article.pdf (559.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03879498 , version 1 (30-11-2022)

Identifiants

  • HAL Id : hal-03879498 , version 1

Citer

Simon Forest, Samuel Mimram. Describing free ω-categories. 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Jun 2019, Vancouver, Canada. ⟨hal-03879498⟩
27 Consultations
81 Téléchargements

Partager

More