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Abstract—The notion of pasting diagram is central in
the study of strict ω-categories: it encodes a collection
of morphisms for which the composition is defined un-
ambiguously. As such, we expect that a pasting diagram
itself describes an ω-category which is freely generated
by the cells constituting it. In practice, it seems very
difficult to characterize this notion in full generality and
various definitions have been proposed with the aim of
being reasonably easy to compute with, and including
common examples (e.g. cubes or orientals). One of the
most tractable such structure is parity complexes, which
uses sets of cells in order to represent the boundaries of
a cell. In this work, we first show that parity complexes
do not satisfy the aforementioned freeness property
by providing a mechanized proof in Agda. Then, we
propose a new formalism that satisfies the freeness
property and which can be seen as a corrected version
of parity complexes.

I Introduction
Pasting diagrams. Informally, a pasting diagram in a strict
ω-category is a finite collection of cells, called generators,
which can be composed unambiguously. This means that
one can write a formal expression consisting of well-typed
compositions of all the generators and, moreover, any two
such expressions should be equal modulo the axioms of
ω-categories. For instance, we expect that the cells on the
left form a pasting diagram

x y z

f

f ′

f ′′

⇓α

⇓β

g
x y z

f

f ′

⇓α
g (1)

since they can be composed as (α ∗1 β) ∗0 g and any
other composition “involving all the generators”, such as
(α ∗0 g) ∗1 (β ∗0 g), will give rise to the same result
because of the axioms of ω-categories. However, we do
not expect that the collection of cells on the right admits
a composition, because the 1-cell g is “oriented in the
wrong direction”, preventing us from writing a well-typed
composition expression involving α and g.

As one can expect, this notion of pasting diagram
has many applications since it allows for concrete and
mechanized computations on ω-categories [9]. For in-
stance, is has been used by Street in order to define
and study the combinatorics of a higher-categorical ana-
logue of simplices, called orientals, from which one can

define a notion of nerve for strict ω-categories [13], [14];
and similar computations can be performed with other
shapes such as cubes [14], [7] or opetopes [12]. It has
also been used by Kapranov and Voevodsky to study
the relationship between strict ω-groupoids and homotopy
types [8], or by Steiner in order to provide a combinatori-
ally pleasant definition of the Crans-Gray tensor product
on ω-categories [11].

Formalisms for pasting diagrams. In dimension 1, a
pasting diagram is precisely a composable sequence of
1-cells:

x0 x1 x2 · · · xn
f1 f2 f3 fn

In higher dimensions, the situation is much more com-
plicated and it turns out that characterizing all pasting
diagrams is out of reach for now. However, it is sufficient
in practice to have access to a “nice” subclass of pasting
diagrams. This class should be large enough, so that it
includes the examples one wants to consider (e.g. orien-
tals). It should also allow for easy explicit computations,
both on paper and with a computer: this means that the
data structures used to describe pasting diagrams should
be relatively common and easy to manipulate (e.g. sets,
multisets, free groups, etc.) and the coherence conditions
imposed on those should be relatively easy to check.

Three main formalisms have been proposed for past-
ing diagrams: Street’s parity complexes [14], [15] (which
we mainly focus on in this article), Johnson’s past-
ing schemes [6], and Steiner’s augmented directed com-
plexes [11] (we should also mention here the work of
Power [10]). They mainly differ by the way they encode
the source and target of generator (respectively, for an
(n+1)-generator, as the sets of n-generators occurring in
the source and target, by relations encoding all the gen-
erators inside the boundary, or by linear maps associating
to a generator the sum of generators occurring in its
boundary), but also by the subtle conditions imposed on
those in order to ensure that they form reasonable classes
of pasting diagrams, as explained above. In this article,
we introduce a new formalism for pasting diagrams, called
torsion-free complexes, adding a new item to the list. To
the best of our knowledge, these various notions have never
been formally related: this is the object of a forthcoming
article [3] showing that all the previous notions of pasting
diagrams can be embedded in the one introduced here,978-1-7281-3608-0/19/$31.00 ©2019 IEEE
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which can thus serve as a unifying framework for compar-
ison.

The freeness property. At the beginning of this intro-
duction, we have mentioned the main property that a
notion of pasting diagram should satisfy: it should give
rise to a unique composition. This can more abstractly
be reformulated by saying that a pasting diagram should
itself induce an ω-category which is freely generated by the
generators of the pasting diagram, what we call here the
freeness property. In this article, we show that this prop-
erty does not hold for parity complexes (nor for Johnson’s
pasting schemes), although it was claimed so. Our counter-
example consists in a parity complex that gives rise to two
composition expressions which are not equal modulo the
axioms of ω-categories. In order to have full confidence in
our counter-example, we have fully implemented the free
ω-category generated by the parity complex in Agda and
formally shown that the two composites are not equal.
Apart from the result itself, this provides a good test
case for the use of formal methods for higher categories.
In the same vein, most of the other properties of parity
complexes had been checked in Coq excepting – of course
– the freeness property [1] (see Remark 6.2 there).

A corrected formalism. This shortcoming has motivated
our introduction of a new formalism for pasting diagrams,
for which the freeness property does hold. We describe it
here along with its main properties. A much more detailed
exposition, along with fully detailed proofs can be found
in [3]. In particular, we mention here that it can be used
in order to compare the various preexisting notions of
pasting diagrams. We believe that this detailed study of
the axiomatics is relevant, because it has helped unravel
subtle flaws such as the one presented here on structures
which were introduced almost 30 years ago, which have
remained unnoticed, at least publicly.

Plan. We recall basic definitions for ω-categories (sec-
tion II), describe a free 3-category in which two compos-
ites are shown to be distinct (section III), recall parity
complexes and provide a counter-example to the freeness
property (section IV), propose a formalism for which this
property holds (section V) and conclude (section VII).

II Strict ω-categories
In this section, we begin by recalling elementary defini-

tions about ω-categories.

Graded set. A graded set C is a set together with a
partition

C =
⊔

n∈N
Cn ,

the elements of Cn being of dimension n. Any subset D
of C is canonically graded by setting Dn = D ∩ Cn for
every n ∈ N. Such a subset is homogeneous of dimension
k ∈ N when Dn = ∅ for n ̸= k. For n ∈ N and S ⊆ C,
denote S≤n =

⋃
i≤n Si.

Globular set. A globular set C is a graded set, the elements
of dimension n being called n-cells, together with functions
∂−

n , ∂+
n : Cn+1 → Cn, respectively associating to an

(n+1)-cell its source and target, in such a way that the
globular identities are satisfied for every n ∈ N:

∂−
n ◦ ∂−

n+1 = ∂−
n ◦ ∂+

n+1 ∂+
n ◦ ∂−

n+1 = ∂+
n ◦ ∂+

n+1 (2)

Given m, n ∈ N with n ≤ m, we write ∂−
n : Cm → Cn for

the function ∂−
n = ∂−

n ◦ ∂−
n+1 ◦ . . . ◦ ∂−

m−1 and similarly for
∂+

n , and Cm ×i Cn for the pullback

Cm ×i Cn Cn

Cm Ci .

⌟
∂−

i

∂+
i

Strict n-category. Given n ∈ N ∪ {ω}, an n-category C
is a globular set such that Ci = ∅ for i > n and which is
equipped with composition and identity operations

∗j : Ci ×j Ci → Ci and idi+1 : Ci → Ci+1

for i < n + 1 and j ≤ i, which moreover satisfy several
axioms. For j ≤ i and x ∈ Cj , we denote idi(x) for
idi ◦ ... ◦ idj+1(x). The required axioms are the following:
(i) if x ∗i y is defined, then ∂ϵ

j(α ∗i β) is defined by
∂ϵ

j(α) = ∂ϵ
j(β) if j < i,

∂−
i (α) if j = i and ϵ = −,

∂+
i (β) if j = i and ϵ = +,

∂ϵ
j(α) ∗i ∂ϵ

j(β) if j > i,

(ii) for x ∈ Ci,

∂−
i (idi+1(x)) = ∂+

i (idi+1(x)) = x

(iii) for any i,

(x ∗i y) ∗i z = x ∗i (y ∗i z)

(iv) for x ∈ Ci and j ≤ i,

idi(∂−
j x) ∗j x = x = x ∗j idi(∂+

j x)

(v) if j < i and (x ∗i y) ∗j (x′ ∗i y′) is defined, then

(x ∗i y) ∗j (x′ ∗i y′) = (x ∗j x′) ∗i (y ∗j y′)

(vi) if x ∗j y is defined, then

idi+1(x ∗j y) = idi+1(x) ∗j idi+1(y)

Given an (n+k)-category C, we write C≤n for the under-
lying n-category. In the following, we allow ourselves to
implicitly consider an n-category as an ω-category with
only identities in dimension k > n. Moreover, for m, n ∈ N,
i ≤ min(m, n), k = max(m, n), and (x, y) ∈ Cm ×i Cn, we
often write x ∗i y for idk(x) ∗i idk(y).



Free ω-category. An n-cellular extension (C, X) of an
n-category C is a collection X of formal n+1-cells for C:
formally, it consists in a set X together with functions
s, t : X → Cn such that, when n > 0, ∂− ◦ s = ∂− ◦ t
and ∂+ ◦ s = ∂+ ◦ t. A morphism f : (C, X) → (D, Y )
of cellular extensions is an n-functor f : C → D together
with a function f ′ : X → Y such that s ◦ f ′ = f ◦ s and
t◦f ′ = f ◦t. We denote Cat+

n for the category of n-cellular
extensions.

There is a forgetful functor U : Catn+1 → Cat+
n

sending an (n+1)-category C to the cellular extension
(C≤n, Cn+1), which admits a left adjoint sending an
n-cellular extension (C, X) to the (n+1)-category C[X],
called the free extension of C by X: the set X∗ of
(n+1)-cells of this category consists in formal compos-
ites of elements of X, considered modulo the axioms of
categories. It satisfies the following universal property:
for every (n+1)-category D, functor f : C → D≤n and
function f ′ : X → Dn+1 such that ∂− ◦ f ′ = f ◦ s and
∂+ ◦ f ′ = f ◦ t, there exists a unique (n+1)-functor g
whose underlying n-functor is f and such that

X Dn+1

C[X]n+1

i

f ′

g
(3)

where i is the canonical inclusion.
An n-category C is free when it is freely generated

by a set X of cells (of any dimension), i.e., we have
C≤k+1 = C≤k[Xk+1] with Xk+1 = X∩Ck+1 for 0 ≤ k < n.
In this case, the category C is entirely described by the
sets Xk, for 0 ≤ k ≤ n, together with the associated maps
sk, tk : Xk+1 → X∗

k , for 0 ≤ k < n, since

C = X0[X1] . . . [Xn] .

This data is sometimes called a polygraph or a computad.

III An ambiguous composition

In order to understand our counter-example to the
freeness property of parity complexes, consider the 3-cate-
gory C freely generated by the 2-cells

x y zb

a

c

α⇓ ⇓α′

β ⇓ ⇓β′
e

d

f

γ ⇓ ⇓γ′

δ ⇓ ⇓δ′
(4)

together with the two 3-cells

x y zb

a

⇓ α
e

f

⇓ δ

Φ
⇛ x y zb

a

⇓ α′
e

f

⇓ δ′

and

x y zb

c

⇓ β
e

d

⇓ γ Ψ
⇛ x y zb

c

⇓ β′ e

d

⇓ γ′

(formally, this is the 3-category associated to the poly-
graph corresponding to the above diagrams). In this
3-category, one can consider two composites involving Φ
and Ψ, namely:

Γ = ((a∗0γ)∗1Φ∗1(β∗0f))∗2((α′∗0d)∗1Ψ∗1(c∗0δ′)) (5)
∆ = ((α∗0d)∗1Ψ∗1(c∗0δ))∗2((a∗0γ′)∗1Φ∗1(β′∗0f)) (6)

whose types are both

(α ∗1 β) ∗0 (γ ∗1 δ) ⇛ (α′ ∗1 β′) ∗0 (γ′ ∗1 δ′) .

We claim here that, in the category C, these composites
are different:

Γ ̸= ∆ (7)

meaning that the compositions defining Γ and ∆ are not
the same modulo the axioms of 3-categories, which seems
difficult to show directly since the standard tools to handle
such axiomatic theories (e.g. convergent rewriting) do not
seem to apply here. The technique we employed to show
this result consisted in fully describing the category C and
showing by computation that the resulting 3-cells are not
the same. Due to the high combinatorial complexity of this
construction (see the figures below), we have employed the
proof assistant Agda which ensures that no corner case has
been overlooked.

The full development can be found in [4]; due to an
unexpected change in the latest versions of Agda, which
is currently being investigated [2], version 2.5.3 must be
used. The careful reader will notice below that we did not
prove the freeness of our construction, so that a priori we
have only described a quotient of the above category C,
which is still enough to conclude that (7) holds in C.

3-categories in Agda. We begin by describing our formal-
ization of 3-categories in Agda. A direct description as
a 3-globular set would be extremely inconvenient since
it would require proving and propagate the globular
identities (2) as equality proofs. A much more practical
definition of 3-categories consists in encoding the source
and target of cells in dependent types, and rely on the
very good support of Agda for dependent pattern match-
ing in order to implicitly handle the globular identities.
Moreover, we can make most of these variables implicit,
leaving the task of inferring them to the proof assistant.

We thus begin by defining 3-precategories as follows.
Those consist in all the structure present in a 3-category
(cells, compositions, identities) without requiring the ax-
ioms to be satisfied (those will be enforced afterward). The



definition is
record PCat3 (C : Set)

(_→1_ : (x y : C) → Set)
(_→2_ : {x y : C} (f g : x →1 y) → Set)
(_→3_ : {x y : C} {f g : x →1 y} (F G :f →2 g)→Set)

: Set where field
id0 : (x : C) → x →1 x
id1 : {x y : C} (f : x →1 y) → f →2 f
. . .
comp10 : {x y z : C} (f : x →1 y) (g : y →1 z) → x →1 z
comp20 : {x y z : C} {f f ′ : x →1 y} {g g′ : y →1 z}

(F : f →2 f ′) (G : g →2 g′) →
(comp10 f g) →2 (comp10 f ′ g′)

. . .

Such a structure thus consists in a set C (the 0-cells)
together with, for every elements x, y ∈ C of a set x →1 y
(the 1-cells from x to y) and, for every x, y ∈ C and
f, g ∈ (x →1 y), a set f →2 g (the 2-cells from f to g) and
so on. Note that for 2-cells, the typing system ensures that
the 1-cells f and g are parallel and moreover the 0-cells
x and y are implicit (they are declared in curly braces)
since they can be inferred from the type of f and g. We
also require the definition of identities and compositions,
e.g. there is a function which, to every 0-cell x, associates
a 1-cell id0 x ∈ (x →1 x).

In order to define 3-categories, we need to put axioms
on the operations of a 3-precategory. In order to do so,
we define types corresponding to the expected axioms
presented in section II:

• is-associj : for 0 ≤ j < i ≤ 3, represent the associativ-
ity of i-cells regarding j-composition (axiom (iii)),

• is-unitij-l and is-unitij-r: for 0 ≤ j < i ≤ 3, represent
the unitality of j-identities for i-cells (axiom (iv)),

• is-compij-id: for 0 ≤ j < i < 3, represent the
compatibility between j-composition and identities
for i-cells (axiom (vi)),

• is-ichijk: for 0 ≤ k < j < i ≤ 3, represent the ex-
change law for i-cells regarding j- and k-compositions
(axiom (v)).

Note that the other axioms of categories are enforced by
typing. The statement of the axioms is straightforward in
low dimensions (they are all of type Set):
is-unit10-l =

{x y : C} {f : x →1 y} → comp10 (id0 x) f ∼= f
is-assoc10 =

{x y z w : C} (f : x →1 y) (g : y →1 z) (h : z →1 w) →
comp10 (comp10 f g) h ∼= comp10 f (comp10 g h)

is-comp10-id =
{x y z : C} (f : x →1 y) (g : y →1 z) →
id1 (comp10 f g) ∼= comp20 (id1 f) (id1 g)

is-ich210 =
{x y z : C} {f f ′ f ′′ : x →1 y} {g g′ g′′ : y →1 z}
(F :f →2 f ′) (F ′ :f ′ →2 f ′′) (G :g →2 g′) (G′ :g′ →2 g′′) →
comp20 (comp21 F F ′) (comp21 G G′) ∼=
comp21 (comp20 F G) (comp20 F ′ G′)

Note that we use here the heterogeneous identity type ∼=
to state the axioms, which allows comparing terms of a
different type, thus removing the need of painful type
coercions. Indeed, take for instance

is-assoc20 : Set
is-assoc20 assoc10 =

{x y z w :C} {f f ′ :x→1 y} {g g′ :y →1 z} {h h′ :z →1 w}
(F : f →2 f ′) (G : g →2 g′) (H : h →2 h′) →
comp20 (comp20 F G) H ∼= comp20 F (comp20 G H)

The two sides of the equation do not have the same type:

(F ∗0 G) ∗0 H : ((f ∗0 g) ∗0 h →2 (f ′ ∗0 g′) ∗0 h′)
F ∗0 (G ∗0 H) : (f ∗0 (g ∗0 h) →2 f ′ ∗0 (g′ ∗0 h′))

making the following homogeneous identity type ill-typed:

(F ∗0 G) ∗0 H ≡ F ∗0 (G ∗0 H)

Although we could coerce the left-hand side using a proof
of is-assoc10 in order to type-check, this would make the
statements of the axioms and their proofs unnecessarily
complicated.

Once these axioms are defined, we can finally state the
definition of a 3-category: it is a 3-precategory satisfying
the axioms of 3-categories, i.e., with an inhabitant for each
of the type associated to each axiom.

Formalizing the example. We can finally formalize the free
3-category (4) in Agda. This example is a sweet spot since
it is too big to be handled by hand, but still small enough
to be attacked with formal methods. To give an idea there
are 3 0-cells, 18 1-cells, 146 2-cells and 166 3-cells. Of
course, those do not have to be listed one by one and can
be written in a somewhat generic way. For instance, the
set of 0- and 1-cells of the category are inductively defined
by

data C0 : Set
where
C0-x : C0
C0-y : C0
C0-z : C0

data C1 : C0 → C0 → Set where
C1-id : (x : C0) → C1 x x
C1-xy : C1-abc → C1 C0-x C0-y
C1-yz : C1-def → C1 C0-y C0-z
C1-xz : C1-abc → C1-def → C1 C0-x C0-z

where C1-abc and C1-def are respectively defined by

data C1-abc : Set where
C1-a : C1-abc
C1-b : C1-abc
C1-c : C1-abc

data C1-def : Set where
C1-d : C1-def
C1-e : C1-def
C1-f : C1-def

Above, there are three constructors C0-x, C0-y, C0-z cor-
responding to the 0-cells x, y and z, and a 1-cell is either

• an identity on a 0-cell x,
• one of the generators a, b, c,
• one of the generators d, e, f ,
• a formal composite of (a, b or c) and (c, d or f).



The sets C2 and C3 of 2- and 3-cells can be defined in
a similar way. Finally, identities and compositions are
defined in the expected way, e.g.

id0 x = C1-id x
comp10 (C1-id x) g = g
comp10 (C1-xy f) (C1-id .C0-y) = C1-xy f
comp10 (C1-xy f) (C1-yz g) = C1-xz f g
comp10 (C1-yz f) (C1-id .C0-z) = C1-yz f
comp10 (C1-xz f g) (C1-id .C0-z) = C1-xz f g

This ends the definition of the underlying 3-precategory
of the category (4).

The remaining part is now to check that the axioms
of categories are satisfied on our precategory C. In low
dimensions, this is easily done by hand, e.g.

assoc10 : is-assoc10 C
assoc10 (C1-id x) g h = refl
assoc10 (C1-xy f) (C1-id .C0-y) g = refl
assoc10 (C1-xy f) (C1-yz g) (C1-id .C0-z) = refl
assoc10 (C1-yz f) (C1-id .C0-z) g = refl
assoc10 (C1-xz f g) (C1-id .C0-z) h = refl

where refl, standing for “reflexivity”, is the only construc-
tor of the identity type ∼=. Note that the case splitting
of Agda takes dependent types in account and thus only
produce typable cases, i.e., we only have to handle com-
posable sequences of morphisms (this is one of the main
reasons of our choice of Agda over Coq). Some other
matches are too long to be done by hand and a generator
of Agda code was written (in OCaml). The worse case is
the one of the proof of the exchange law is-ich210 for 2-cells
with respect to compositions ∗0 and ∗1: our program
generates a proof involving 306386 cases (resulting in a
file of more than 55MB). As is, this proof cannot be
verified by Agda: the typechecking crashes after 7 minutes,
topping at 12GB of memory consumption. Fortunately,
this can be proven differently. First, we show that the
model satisfies a distributivity of the right 0-composition
over the 1-composition: given cells as in the left of (1), we
have

(α ∗1 β) ∗0 g = (α ∗0 g) ∗1 (β ∗0 g) .

(and dually, we have a distributivity on the left). Both are
proved using trivial reflexivity on a convenient splitting of
the parameters. Next we can prove that, given 0-compo-
sable 2-cells α : f ⇒ f ′ and β : g ⇒ g′, we have

α ∗0 β = (α ∗0 idg) ∗1 (idf ′ ∗0 β) = (idf ∗0 β) ∗1 (α ∗0 idg′)

The exchange law of type is-ich210 is easily deduced from
the above lemmas.

Finally, the inequality (7) has an immediate proof:
we define the cells cell-Γ and cell-Δ as the respective
composites (5) and (6) and conclude

main-lemma : ¬(cell-Γ ∼= cell-Δ)
main-lemma ()

The full formalization of our example category has 6990
lines in total and can be typechecked in almost 45 minutes,
using 3.5GB. We conclude:

Theorem 1. In the above free 3-category C, Γ ̸= ∆.

Another proof can be given by exhibiting a suitable
functor F : C → Cat2 such that F (Γ) ̸= F (∆), en-
tailing theorem 1, see [3]. Here, Cat2 is the 3-category
of 2-categories, 2-functors, natural transformations and
modifications. The above proof has the advantage of being
conceptually more clear (we directly formalize the free
category instead of finding an appropriate interpretation)
and is a good test-case of the applicability of formal
methods in the context of strict higher-categories.

Finally, we should note that related counter-examples
have independently been found by Henry, studying subcat-
egories of polygraphs which form presheaf categories [5].

IV Parity complexes
In this section, we recall the definition of parity com-

plexes as given in [14] with the corrections given in [15]. A
few minor changes of notations were made to the original
presentation. In a free ω-category, the source and the tar-
get of an (n+1)-generator are free n-cells, i.e., formal com-
posites of n-generators modulo the axioms of categories.
In practice, such a direct representation is difficult to
manipulate and it turns out that, in many situations, the
source and target n-cells are in fact entirely characterized
by the set of n-generators they are constituted of. The
notion of parity complex provides a formal framework for
this intuition, the difficult part being to provide suitable
restrictions so that it holds.

ω-hypergraph. An ω-hypergraph P is a graded set, the el-
ements of dimension n being called n-generators, together
with, for each generator x ∈ Pn+1, two finite subsets
x−, x+ ⊆ Pn called the source and target of x.

Given a subset X ⊆ P , we extend the above notation by
setting Xϵ =

⋃
x∈X xϵ for ϵ ∈ {−, +}. In the following, we

write x−− for (x−)−, and similarly for other signs. Given
a subset X ⊆ P , we define X∓ as X− \ X+ and X± as
X+ \ X−. X∓ and X± should be understood respectively
as the negative and positive “borders” of X.
Example 2. The diagram

y

x z z′

ba

c

⇓f d
(8)

can be encoded as the ω-hypergraph P with

P0 = {x, y, z, z′} P1 = {a, b, c, d} P2 = {f}

and Pn = ∅ for n ≥ 3, source and target being

a− = {x} a+ = {y} f− = {a, b} f+ = {c}



and so on. Moreover, we have

f−− = {x, y} f−+ = {y, z} f−∓ = {x} f−± = {z} .

Fork-freeness. Given n ∈ N, a subset X ⊆ Pn is fork-free
(also called well-formed in [14]) when:

• if n = 0 then |X| = 1,
• if n > 0 then for all x, y ∈ X and ϵ ∈ {−, +}, if

xϵ ∩ yϵ ̸= ∅ then x = y.
Example 3. The subset {a, c} of (8) is not fork-free since
a− ∩ c− = {x}.

Dependency order. For n > 0 and X ⊆ Pn, the relation ◁X

on X is the smallest transitive relation such that, for
x, y ∈ Xn, x◁Xy when x+∩y− ̸= ∅. We extend this relation
on subsets Y, Z ⊆ P by writing Y ◁X Z when there exist
y ∈ Y and z ∈ Z such that y ◁X z. We will see (lemma 29)
that the relation ◁X can be seen as a dependency order
corresponding to the order in which the generators of X
might be composed. We also define the relation ◁ on P as
◁ =

⋃
i>0 ◁Pi

. The ω-hypergraph P is acyclic when ◁ is
irreflexive. For Y ⊆ X, we say that Y is a segment for ◁X

when for all x, y, z ∈ X with x ◁X y ◁X z and x, z ∈ Y , it
holds that y ∈ Y .
Example 4. The ω-hypergraph

x y

f

g

is not acyclic since we have f ◁ g ◁ f .

Cell. For n ∈ N, an n-pre-cell is a tuple

X = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn)

of finite subsets of P , such that Xi,ϵ ⊆ Pi for 0 ≤ i < n and
ϵ ∈ {−, +}, and Xn ⊆ Pn. By convention, we sometimes
write Xn,− or Xn,+ for Xn. The collection of pre-cells of P
is canonically equipped with a structure of globular set:
given n ≥ 0, ϵ ∈ {−, +} and an (n+1)-pre-cell X, define
the n-pre-cell ∂ϵX as

∂ϵX = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn,ϵ)

The globular conditions ∂ϵ ◦∂− = ∂ϵ ◦∂+ are then trivially
satisfied.

Given sets X, Y ∈ Pn and F ∈ Pn+1, for some n ∈ N,
we say that F moves X to Y when

X = (Y ∪ F −) \ F + and Y = (X ∪ F +) \ F − .

The idea here is that Y is the subset obtained from X
by replacing the “negative border” of F by its “positive
border”.
Example 5. In (8), {f} moves {a, b, d} to {c, d}.

An n-cell is a pre-cell as above, such that,
• Xi,ϵ is fork-free for 0 ≤ i ≤ n and ϵ ∈ {−, +},
• Xi+1,ϵ moves Xi,− to Xi,+ for 0 ≤ i < n, ϵ ∈ {−, +}.

We denote Cell(P ) the graded set of cells, which inherits a
structure of globular set from pre-cells. The n-cell X can
then be represented the following way:

Xn

Xn−1,− Xn−1,+

Xn−2,− Xn−2,+...
X1,− X1,+

X0,− X0,+

where the arrows X Y
F

mean that F moves X to Y .
Example 6. Consider the pasting diagram

·

· ·

x · y · z

· ·

·

d

⇓ β

c

c′′

⇓ α

e

⇓ δ
a

b

b′

⇓ γ

f

c′′′

c′

e′

d′

It contains (among other) the cells

({x})
({x}, {y}, {a, b, c′′}, {a, b′, c′′′}, {α})

({x}, {z}, {a, b, c, d, e, f}, {a, b′, c′, d′, e′, f}, {α, β, γ, δ}) .

Composition of cells and identity. For X a cell of di-
mension n, define the i-source ∂−

i X by induction on i
by ∂−

n X = X and ∂−
i X = ∂−(∂−

i+1X), and the the
i-target ∂+

i X is defined similarly. This equips the collection
Cell(P ) of all cells of P with the structure of a globular
set. We say that two n-cells X and Y are i-composable
when ∂+

i X = ∂−
i Y , for some 0 ≤ i < n. In this case, we

define their i-composite X ∗i Y as the pre-cell

Z = (Z0,−, Z0,+, ..., Zn−1,−, Zn−1,+, Zn)

such that

Zj,ϵ =


Xj,ϵ if j < i,
Xi,− if j = i and ϵ = −,
Yi,+ if j = i and ϵ = +,
Xj,ϵ ∪ Yj,ϵ if j > i.

The identity of an n-cell X is the (n+1)-cell idX such that:

idX = (X0,−, X0,+, . . . , Xn−1,−, Xn−1,+, Xn, Xn, ∅)



Atom. The atom associated to a generator x ∈ Pn is the
pre-cell ⟨x⟩ corresponding to this generator. Formally, it
is defined as

⟨x⟩ = (⟨x⟩0,−, ⟨x⟩0,+, . . . , ⟨x⟩n−1,−, ⟨x⟩n−1,+, ⟨x⟩n)

with ⟨x⟩n = {x} and, for 0 ≤ i < n,

⟨x⟩i,− = ⟨x⟩∓
i+1,− and ⟨x⟩i,+ = ⟨x⟩±

i+1,+ .

A generator x is relevant when the atom ⟨x⟩ is a cell.
Example 7. The atom associated to f in the example (8)
is ⟨f⟩ with

⟨f⟩0,− = {x} ⟨f⟩0,+ = {z} ⟨f⟩2 = {f}
⟨f⟩1,− = {a, b} ⟨f⟩1,+ = {c}

Tightness. A subset X ⊆ Pn is tight when, for all x, y ∈ Pn

such that x ◁ y and y ∈ X, we have x− ∩ X± = ∅. For
example, in example 6, X = {β, γ} is not tight since
α ◁ γ and c′′ ∈ α− ∩ X±. This is a correction appearing
in [15] but which will not be used for defining torsion-free
complexes.

Parity complex. A parity complex P is an ω-hypergraph
satisfying the following axioms:

(C0) for n ≥ 1 and x ∈ Pn, x− ̸= ∅ and x+ ̸= ∅,
(C1) for n ≥ 2 and x ∈ Pn, x−− ∪ x++ = x−+ ∪ x+−,
(C2) for n ≥ 1 and x ∈ Pn, x− and x+ are fork-free,
(C3) P is acyclic,
(C4) for n ≥ 1, x, y ∈ Pn, z ∈ Pn+1, if x ◁ y, x ∈ zϵ

and y ∈ zη for some ϵ, η ∈ {−, +}, then ϵ = η,
(C5) for i < n and x ∈ Pn, ⟨x⟩i,− is tight.

Axiom (C1) ensures that generators have globular shapes,
so that the following ω-hypergraph is disallowed:

· · · ·

x

y

⇓ f (9)

Axiom (C2) forbids generators to have parallel genera-
tors in their source or their target. For example, in the
ω-hypergraph

x
y

z
f (10)

does not satisfy (C2) since f− is not fork-free. Axiom (C3)
ensures that the hypergraph is acyclic, forbidding ω-hyper-
graphs like example 4. Axiom (C4) roughly says that we
cannot have “a bridge between the source and the target
of a generator”: for instance, the ω-hypergraph

y

x z

y′

g

h

f

f ′ g′

with

y

x ⇓ α z

y′

gf

f ′ g′

(11)

is disallowed because we have α− ∋ f ◁ h ◁ g′ ∈ α+, i.e.,
h is a “bridge” between the source and the target of α.

The axioms (C0) to (C4) above were originally the only
ones [14], but they appeared not to be sufficient and (C5)
was added afterward [15]. This axiom relates to a property
that we call the segment axiom that will be discussed in
next section.

Based on these axioms, Street states two claims about
parity complexes [14]. First, that the above operations
equip it with a structure of an ω-category:

Theorem 8 ([14, Theorem 3.6]). Given a parity com-
plex P , Cell(P ) is an ω-category.

Second, that this ω-category is free:

Claim 9 ([14, Theorem 4.2]). Given a parity complex P ,
the ω-category Cell(P ) is freely generated by the set
{⟨x⟩ | x ∈ P, x is relevant}.

However, we will see now that the last claim does not
hold as is, by providing a counter-example based on the
situation described in section III, and propose a corrected
axiomatic for parity complexes in section V.

Freenesslessness. The diagram (4) defining the 3-category
of section III can be interpreted as an ω-hypergraph P
with

P0 = {x, y, z} P1 = {a, b, c, d, e, f}
P2 = {α, α′, β, β′, γ, γ′, δ, δ′} P3 = {Φ, Ψ}

and figured sources and targets, e.g.

Φ− = {α, δ} Φ+ = {α′, δ′} Ψ− = {β, γ} Ψ+ = {β′, γ′}

which is easily checked to satisfy the axioms (C0) to (C5)
of parity complexes. Moreover, all the generators can be
shown relevant. In the ω-category Cell(P ), consider the
two compositions (5) and (6) (respectively corresponding
to Γ and ∆), interpreting the generators as the correspond-
ing atom, i.e.,

((⟨a⟩∗0⟨γ⟩)∗1⟨Φ⟩∗1(⟨β⟩∗0⟨f⟩))∗2((⟨α′⟩∗0⟨d⟩)∗1⟨Ψ⟩∗1(⟨c⟩∗0⟨δ′⟩))
((⟨α⟩∗0⟨d⟩)∗1⟨Ψ⟩∗1(⟨c⟩∗0⟨δ⟩))∗2((⟨a⟩∗0⟨γ′⟩)∗1⟨Φ⟩∗1(⟨β′⟩∗0⟨f⟩))

These two composite induce the same 3-cell X with

X3 = {Φ, Ψ}
X2,− = {α, β, γ, δ} X2,+ = {α′, β′, γ′, δ′}
X1,− = {a, d} X1,+ = {c, f}
X0,− = {x} X0,− = {z}

As a consequence, we can conclude that claimed theorem 9
does not hold with the above parity complex P :

Theorem 10. The ω-category Cell(P ) is not freely gener-
ated by its atoms.

Proof. Suppose that Cell(P ) is freely generated by the
atoms of P . Then, by the universal property of free
extensions, there is a functor I : Cell(P ) → C, where C
is the free ω-category described in section III, sending
each atom to the corresponding cell (e.g. I(⟨Φ⟩) = Φ).



By functoriality, the two above composites are respectively
sent to Γ and ∆, i.e., Γ = F (X) = ∆, but we have shown
Γ ̸= ∆ in theorem 1, thus reaching a contradiction.
V Torsion-free complexes

In this section, we propose a new set of axioms on
ω-hypergraphs which entails theorem 9, thus fixing the
definition of parity complexes. We begin by introducing
two conditions which will be explained below.
Segment condition. Given an m-generator x ∈ Pm of
an hypergraph P , we say that x satisfies the segment
condition when, for all i < m and X i-cell such that
⟨x⟩i,− ⊆ Xi, it holds that ⟨x⟩i,− is a segment for ◁Xi

,
and dually with ⟨x⟩i,+.
Torsion. Given an m-cell X and two generators x and
y of respective dimensions i and j with i, j > m > 0,
x and y are in torsion with respect to X, when
⟨x⟩m,+ ⊆ Xm, ⟨y⟩m,− ⊆ Xm, ⟨x⟩m,+ ∩ ⟨y⟩m,− = ∅, and
⟨x⟩m,+ ◁Xm

⟨y⟩m,− ◁Xm
⟨x⟩m,+.

Torsion-free complexes. An ω-hypergraph P is a torsion-
free complex when it satisfies the following axioms:

(T0) for n ≥ 1 and x ∈ Pn, x− ̸= ∅ and x+ ̸= ∅,
(T1) P is acyclic,
(T2) for all x ∈ P , x is relevant,
(T3) for m ≥ 0 and x ∈ Pm, x satisfies the segment

condition,
(T4) for all m > 0, i, j > m, x ∈ Pi, y ∈ Pj and X

m-cell, x and y are not in torsion with respect
to X.

Axiom (T0), also called non-emptiness axiom, corresponds
to (C0) which enforces that the source and the target of
each generator of the ω-hypergraph are not empty, so that
the following ω-hypergraphs are forbidden:

y
x y

f

⇓α

Axiom (T1), called acyclicity axiom, corresponds to (C3)
and forbids ω-hypergraphs involving some kind of loop as
in the following

x y

z

f

gh

x y

f

f

⇓α

Axiom (T2), called relevance axiom, asks that genera-
tors of the ω-hypergraph induce cells. For example, the
ω-hypergraphs 9 and 10 are forbidden by this axiom.

Lemma 11. An ω-hypergraph satisfying (T2) also satisfies
axioms (C1) and (C2) of parity complexes.

The axioms (T3), called segment axiom, and (T4), called
torsion-freeness axioms, are more complicated and are
detailed below. They roughly respectively ensure that the
atoms are generating and that compositions are free in the
ω-category Cell(P ).

Segment axiom. Recall that our goal is to obtain a
category of cells which is freely generated by the atoms. A
necessary condition for this is that all cells should be de-
composable, that is, obtainable by compositions of atoms.
But the definition of cells does not require this property
and in fact there are cells that are not decomposable under
axioms (T0) to (T2). Consider the ω-hypergraph on the
left below, with an additional 3-generator Φ as on the
right:

z

y

x

w

d′

d

a′ac

b

b′

e

α1⇒
⇒
α′

1

α4⇒
⇒
α′

4
α2⇒

α3⇐

z

y

x

d′d

a′a α1⇒

α4⇒

Φ
⇛

z

y

x

d′d

a′a α′
1⇒

α′
4⇒

(12)
where α−

3 = {b′} and α+
3 = {c, d, e}. In this example, there

is a maximal cell Y given by:

Y3 = {Φ}
Y2,− = {α1, α2, α3, α4} Y2,+ = {α′

1, α2, α3, α′
4}

Y1,− = {a, b} Y1,+ = {c, d′, e}
Y0,− = {x} Y0,+ = {z}

(13)

and Y is not decomposable (explanations follow).
Axiom (T3), called segment axiom, prevents this kind of

problem. In particular, the ω-hypergraph (12) is forbidden
by this axiom. Indeed, the 2-cell X with:

X2 = {α1, α2, α3, α4}
X1,− = {a, b} X1,+ = {c, d′, e}
X0,− = {x} X0,+ = {z}

(14)

satisfies ⟨Φ⟩2,− = {α1, α4} ⊆ X2 but α1◁X2 α2◁X2 α3◁X2 α4
and α2, α3 ̸∈ ⟨Φ⟩2,−. So ⟨Φ⟩2,− is not a segment for ◁X2 .

In order to understand how the decomposability of
cells relates to (T3), we make the following observa-
tions. Firstly, ◁ restricts in which order generators can
be composed. In (12), if there exist x1, x2, x3, x4 ∈ P2
and X1, X2, X3, X4 2-cells with Xi

2 = {xi} such that
X (14) satisfies X = X1 ∗1 X2 ∗1 X3 ∗1 X4, then, since
α1 ◁ α2 ◁ α3 ◁ α4, the only possible case is xi = αi.
Secondly, the decomposition property that we want asks
for some orders of compositions to be allowed. In (12),
note that ∂−

2 Y = X. Then, a necessary condition for Y to
be decomposable into atoms is that there should exist an
order of composition of X in which α1, α4 are consecutive.
This does not hold since ◁Xn

forbids it, so Y is not decom-
posable and then this ω-hypergraph should be forbidden.
Hence, the segment axiom is a necessary requirement to
conciliate the restrictions imposed by ◁ on compositions
and the properties needed to have decomposable cells.



Lemma 12. The segment axiom is a consequence of the
axioms of parity complexes.

Torsion-freeness axiom. A situation with torsion can be
exhibited in the ω-hypergraph (4). Indeed, consider the
2-cell X given by

X2 = {α′, β, γ, δ′}
X1,− = {a, d} X1,+ = {c, f}
X0,− = {x} X0,+ = {z}

Then, ⟨Φ⟩2,+ ⊆ X2 and ⟨Ψ⟩2,− ⊆ X2 and Φ and Ψ are in
torsion with respect to X since α′ ◁X2 β and γ ◁X2 δ′, and
we have seen that this is an example of a polygraph P such
that the category Cell(P ) is not free. The torsion-freeness
axiom excludes such parity complexes in which there are
cells which are ambiguous, in the sense that they can be
obtained as two different and non-equivalent composites.
Indeed, given x, y and X as in the statement of (T4),
one can exhibit a cell Y that is obtained by composing
“x then y” or alternatively “y then x”, but the “torsion”
between x and y prevents from exchanging them, in a way
that the two previous compositions can not be related by
the axioms of ω-categories.

Comparing with parity complexes. We have the follow-
ing comparison theorem between parity complexes and
torsion-free complexes:

Theorem 13. A parity complex satisfying (T2) and (T4)
is a torsion-free complex.

At first sight, the formulation of this theorem seems to
imply that there are parity complexes which are not
captured by the notion of torsion-free complex, the former
notion thus being more general. However, although parity
complexes can have generators that are not relevant,
i.e., do not necessarily satisfy condition (T2), the non-
relevant generators play no role in the cells and can be
removed without changing the associated ω-category of
cells. Moreover, there is no known example of a parity
complex not satisfying (T4) whose associated ω-category
is free, and we conjecture that there exists none. Under
such an assumption, (T4) would be the weakest axiom
to add to obtain a corrected version of parity complexes,
meaning that torsion-free complexes are not missing any
free ω-categories from parity complexes.

Computable axioms. The axioms (T3) and (T4) stated
above are computationally expensive and inconvenient for
day-to-day use. In this section, we give stronger axioms
that are easier to compute and imply the previous ones. In
the following, suppose given an ω-hypergraph P satisfying
the axioms (T0), (T1) and (T2).

Given m ≥ 0, x, y ∈ Pm, write x ↷ y when there exists
z ∈ Pm+1 such that x ∈ z− and y ∈ z+. Denote ↷∗ the
reflexive transitive closure of ↷. When S, T ⊆ Pm, we
write S ↷∗ T when there exist s ∈ S and t ∈ T such

that s ↷∗ t. We define the following alternate version of
axioms (T3) and (T4):

(T3’) for m > 0, x ∈ Pm, k < m,
¬(⟨x⟩k,+ ↷∗ ⟨x⟩k,−),

(T4’) for m > 0, i, j > m, x ∈ Pi, y ∈ Pj , if
⟨x⟩m,+ ∩ ⟨y⟩m,− = ∅, then at most one of the
following is true:

⟨x⟩m−1,+ ↷∗ ⟨y⟩m−1,− or ⟨y⟩m−1,+ ↷∗ ⟨x⟩m−1,− .

Then, (T3) and (T4) can be independently replaced by
their computable counterparts in the axiomatic of gener-
alized parity complexes.

Lemma 14. If P satisfies (T3’), then it satisfies (T3).

Lemma 15. If P satisfies (T4’), then it satisfies (T4).

VI The ω-category of cells
Finally, in this section, we provide the main steps of the

proof showing that given a torsion-free complex P , the
set Cell(P ) of cells of P can canonically be equipped with
a structure of ω-category and moreover, this ω-category is
freely generated by the atoms. We only give here sketches
and a detailed account can be found in [3]. The structure
of the proof follows the original one of Street [14] with
two major improvements: firstly, it avoids introducing the
notion of receptive cell which is quite odd and turns out
to be satisfied by every cell and, secondly, the proof of
freeness is detailed and corrected.

Cells form an ω-category. We begin by showing that
Cell(P ) is an ω-category. The first (and main) step is
to prove an analogue of [14, Lemma 3.2], see theorem 17
below. Let X an m-pre-cell and U ⊆ Pm+1. We say that
U is glueable on X if U∓ ⊆ Xm. If so, we call gluing of U
on X the m+1-pre-cell Y such that Ym+1 = U and

Ym,− = Xm Ym,+ = (Xm ∪ U+) \ U− Yi,ϵ = Xi,ϵ .

We denote Y as Glue(X, U). Moreover, we call activation
of U on X the pre-cell ∂+

m(Glue(X, U)) and we denote it
Act(X, U) (see figure 1).
Example 16. Consider the ω-hypergraph from (12) and the
cells X of (14) and Y of (13). Then {Φ} is glueable on X
and Glue(X, {Φ}) = Y and Act(X, {Φ}) is the 2-cell X ′

with:

X ′
2 = {α′

1, α2, α3, α′
4}

X1,− = {a, b} X1,+ = {c, d′, e}
X0,− = {x} X0,+ = {z}

Theorem 17. Given a torsion-free complex, an m-cell X,
and U ⊆ Pm+1 a finite fork-free set such that U is glueable
on X. Then

1) Act(X, U) is a cell, and U+ ∩ Xm = ∅,
2) Glue(X, U) is a cell,
3) if V ⊆ Pm+1 such that V ± ⊆ Xm then V − ∩ U+ = ∅.



U

Xm (Xm ∪ U+) \ U−

Xm−1,− Xm−1,+...
X1,− X1,+

X0,− X0,+

X Act(X, U)
Glue(X, U)

Figure 1. Cells involved and their movements in theorem 17.

The main use of Theorem 17 is that it enables to
construct cells from other cells. In particular, it entails
that cell composition is well-defined.

Lemma 18. Let m > n ≥ 0 and X,Y two m-
cells that are n-composable. Then, X ∗n Y is a cell.
Moreover, for n < k ≤ m and ϵ ∈ {−, +},
(Xϵ

k,− ∪ Xϵ
k,+) ∩ (Y ϵ

k,− ∪ Y ϵ
k,+) = ∅.

The structure of ω-category on Cell(P ) follows readily,
since checking the axioms of ω-categories involve only
trivial properties on sets.

Theorem 19. (Cell(P ), ∂−, ∂+, ∗, id) is an ω-category.

Atoms are generating. Suppose given an ω-category C
and a set G of cells of C. We say that C is generated by G
when every cell of C can be obtained as a composite of
elements of G and identities.
Example 20. Consider the ω-category C freely generated
by the polygraph:

x y

f

g

h

⇓α

⇓β

The set G′ = {α, β} is not generating whereas
G = {x, y, f, g, h, α, β} is.

Lemma 21. A set G of cells in an ω-category C generates
it if and only if G≤m generates C≤m in C≤m for all m ∈ N.

Define the rank of an m-cell X to be the m-tuple of
cardinals:

Rank(X) = (|X1,− ∩ X1,+|, ..., |Xm−1,− ∩ Xm−1,+|, |Xm|)

On those, the lexicographic ordering <lex is well-founded:
it is defined by (p1, . . . , pm) <lex (q1, . . . , qm) if there exists
1 ≤ k ≤ m such that pi = qi for i > k and pk < qk. Then,
a cell which is not an atom can be written as a composite
of smaller cells.

Lemma 22 (Excision of extremals). Let X an m-cell
such that x ∈ Xm and X ̸= ⟨x⟩. Then there exist

n < m and m-cells Y, Z such that Rank(Y ) <lex Rank(X),
Rank(Z) <lex Rank(X) and X = Y ∗n Z.

Then, we can deduce the generating property of the atoms.

Theorem 23. Given a torsion-free complex P , the set of
atoms is generating Cell(P ).

Proof. Since <lex is well-founded, for every cell X, we
conclude by lemma 22.

Contexts. Our last task consists in showing that the
ω-category of cells is freely generated by the atoms. In
order to do so, we first need to study the notion of context
in an ω-category C.

Given m ∈ N, suppose fixed two m-cells y, z ∈ C which
are parallel, i.e., have the same source and the same target
(by convention any two 0-cells are parallel). We define
below the notion of context E of type (y, z): it can be
thought of as an m-cell composed of k-cells, of dimension
at most m−1, together with a “hole” cell from y to z, which
can be substituted by an actual cell. Given an n-cell x,
with n > m, such that ∂−

mx = y and ∂+
mx = z, we say

that E is adapted to x: in this situation, we will have an
induced n-cell, noted E[x], which will be defined along
with the notion of k-context. The notion of m-context (or
simply context) E of type (y, z) is defined by induction on
the dimension m of y and z as follows.

• For 0-cells y and z, there is a unique context of type
(y, z), noted [−]. Given an n-cell x as above, the
induced cell is [x] = x.

• For y and z of dimension m+1, a context of type (y, z)
consists of a context E′ of type (∂−y, ∂+z), together
with a pair of (m+1)-cells xm+1 and x′

m+1 such that

∂+(xm+1) = E′[∂−y] and ∂−(x′
m+1) = E′[∂+z] .

Given an n-cell x as above, the induced cell is

E[x] = xm+1 ∗m E′[x] ∗n x′
m+1

so that we sometimes write

E = xm+1 ∗m E′ ∗m x′
m+1.

Given parallel m-cells y and z, a context of type (y, z)
thus consists of pairs of suitably typed k-cells (xk, x′

k), for
0 ≤ k ≤ m, and is of the form

E = xm ∗m−1 (. . . ∗1 (x1 ∗0 [−] ∗0 x′
1) ∗1 . . .) ∗m−1 x′

n

We sometimes write π−
k E = xk and π+

k E = x′
k for the

k-cells of the context E.
Example 24. Given two 2-cells α, β : f ⇒ g : x → y, a
context of type (α, β) can be depicted as

· x y ·

x2 ⇓

x′
2 ⇓

x1
f

g

α⇓
[−]
⇛ ⇓β

x′
1 (15)



Lemma 25. Suppose that C is generated by a set G of
cells. Then every m-cell x is either of the form idx′ , for
some (m−1)-cell x′, or of the form

E1[x1] ∗m−1 E2[x2] ∗m−1 . . . ∗m−1 Ek[xk] (16)

for some m-cells x1, . . . , xk ∈ G and adapted (m−1)-con-
texts E1, . . . , Ek.

Atoms are freely generating. Here, we prove that the ω-
category Cell(P ) is free by showing, using an induction on
m, that the m-category Cell(P )≤m is freely generated by
its atoms. The base case is immediate and we suppose the
property satisfied for m ∈ N. We have a cellular extension

Cell(P )≤m Pm+1

where the two functions send a generator x ∈ Pm+1 to
∂ϵ⟨x⟩, for ϵ ∈ {−, +}. We consider the associated free
extension, noted

Cell(P )+
≤m = Cell(P )≤m[Pm+1] .

By its universal property, there is a functor

I : Cell(P )+
≤m → Cell(P )≤m+1

which is the only one, up to isomorphism, whose underly-
ing m-functor is the identity, satisfying (3). For x ∈ Pm+1,
we write x̂ for its image under the canonical inclusion
Pm+1 → Cell(P )+

≤m. By convention, for x ∈ Pi with
0 ≤ i ≤ m, we also write x̂ = ⟨x⟩.

The following lemma ensures that there is a well-defined
set of (m+1)-generators for an (m+1)-cell in Cell(P )+

≤m.

Lemma 26. Suppose given generators x1, . . . , xk ∈ Pm+1
and contexts E1, . . . , Ek in Cell(P )≤m such that

X = E1[x̂1] ∗m . . . ∗m Ek[x̂k]

exists in Cell(P )+
≤m. Then

I(X)m+1 = {x1, ..., xk}

and xi ̸= xj for i ̸= j. In the case where k = 0, X is of the
form X = idY and we have I(idY )m+1 = ∅.

In particular, if

E1[x̂1] ∗m . . . ∗m Ek[x̂k] = Ẽ1[ŷ1] ∗m . . . ∗m Ẽk′ [ŷk′ ]

for some generators y1, . . . , yk′ ∈ Pm+1 and contexts
Ẽ1, . . . , Ẽk′ , then {x1, . . . , xk} = {y1, . . . , yk′} and k = k′.

We now state the main lemmas which are used in order
to prove the freeness property (theorem 33 below). Recall
that, given a poset (U, <), a subset V ⊆ U is said initial
(resp. terminal) for < when for all x ∈ U , if there exists
y ∈ V such that x < y (resp. y < x), then x ∈ V . Fixing
U = {x1, . . . , xk}, a linear extension is a permutation σ of
the indices such that xσ(i) < xσ(j) implies i < j for i ̸= j.

The first lemma ensures that in a context of the
form (15), we can transfer some generators from x2 to x′

2
(or the converse) without changing the cells induced by

the contexts, as long as the “dependency order” between
the generators is preserved.

Lemma 27. Let x ∈ Pm+1, E an adapted n-context of
Cell(P )+

≤m with n ≤ m and X = E[x̂]. Let the following
subsets of Pn:

S = (π−
n E)n ∪ (π+

n E)n U = {y ∈ S | y ◁S′ ⟨x⟩n,−}
S′ = S ∪ ⟨x⟩n,− = (∂−

mX)n V = {y ∈ S | ⟨x⟩n,− ◁S′ y}

Then, for every partition U ′ ⊔ V ′ of S such that U ⊆ U ′,
and V ⊆ V ′, U ′ initial and V ′ final for ◁S, there exists an
n-context Ẽ such that

(π−
n Ẽ)n = U ′ (π+

n Ẽ)n = V ′ X = Ẽ[x̂] .

Graphically, with n = 2, this can be illustrated as

· ·· ·x̂π−
1 E π+

1 E

⇓ V

⇓ U

=
U ′

V ′

· ·· ·x̂π−
1 Ẽ π+

1 Ẽ

⇓ V

⇓ U

Proof. By induction, we can reduce to the case where
U ′ = (π−

n E)n \ {y} and V ′ = (π+
n E)n ∪ {y}.

Using lemma 29 inductively, we can suppose that
(π−

n E)n = E1[ŷ1] ∗n−1 . . . ∗n−1 Ek[ŷk] ∗n−1 Ey[ŷ]. By
lemma 28 (used inductively with lower n), we have
Ey[ŷ] ∗m−1 E′[x̂] = Ẽ′[x̂] ∗m−1 Ẽy[ŷ].

Next, we show that if two (m+1)-generators in context
do not have common m-generators in their source and
target then we can apply the exchange rule.

Lemma 28. Let k1, k2 ≥ 0 such that max(k1, k2) = m+1,
x1 ∈ Pk1 , x2 ∈ Pk2 , E1, E2 two n-contexts of Cell(P )≤m

with 0 ≤ n < min(k1, k2) such that E1[x̂1] ∗n E2[x̂2] is an
(m+1)-cell in Cell(P )+

≤m. Then

⟨x1⟩n,− ∩ ⟨x2⟩n,+ = ∅

Moreover, if ⟨x1⟩n,+ ∩ ⟨x2⟩n,− = ∅, then there exist n-con-
texts Ẽ1, Ẽ2 such that:

E1[x̂1] ∗n E2[x̂2] = Ẽ2[x̂2] ∗n Ẽ1[x̂1]

Proof. We have I(E1[x̂1]∗n E2[x̂2]) = E1[⟨x1⟩]∗n E2[⟨x2⟩].
By lemma 18, E1[⟨x1⟩]−n+1,− ∩ E2[⟨x2⟩]+n+1,+ = ∅. We
deduce the first part since Ei[⟨xi⟩]n+1,ϵ = ⟨xi⟩n+1,ϵ and
⟨xi⟩n,ϵ ⊆ ⟨xi⟩ϵ

n+1,ϵ for (i, ϵ) ∈ {(1, −), (2, +)}.
For the second part, using lemma 29 (with lower m) and

axiom (T4), we are able to reduce to the case where E1[x̂1]
and E2[x̂2] are respectively of the form

π−
n E1 ∗n−1 E′

1[x̂1] ∗n−1 X ∗n−1 E′
2[∂−

n x̂2] ∗n−1 π+
n E2

and

π−
n E1 ∗n−1 E′

1[∂+
n x̂1] ∗n−1 X ∗n−1 E′

2[x̂2] ∗n−1 π+
n E2

with X an n-cell. For such a form, we can apply an
exchange rule and conclude the second part.



Note that this is the only place where we need (T4). An
instance of the above lemma, with n = 2 can be pictured
as

· ·
· ·x̂1

⇓ π+
2 E1

⇓ π−
2 E1

∗1 · ·
· ·x̂2

⇓ π+
2 E2

⇓ π−
2 E2

= · ·
· ·x̂2

⇓ π+
2 Ẽ2

⇓ π−
2 Ẽ2

∗1 · ·
· ·x̂1

⇓ π+
2 Ẽ1

⇓ π−
2 Ẽ1

We have seen in lemma 25 that every m-cell can be ex-
pressed as a composition (16) of m-generators in context.
We now show that there is such a decomposition for every
linearization of the poset of such m-generators under the
“dependency order” ◁.

Lemma 29. Consider a set U = {x1, ..., xk} ⊆ Pm+1 of
generators and m-contexts E1, . . . , Ek such that the cell

X = E1[x̂1] ∗m . . . ∗m Ek[x̂k]

exists in Cell(P )+
≤m. Then

xi ◁D xj implies i < j

for all indices i, j such that 1 ≤ i, j ≤ k. Moreover, if σ is
a linear extension of (U, ◁U ), then there exist m-contexts
Ẽ1, ..., Ẽk such that

X = Ẽ1[x̂σ(1)] ∗m ... ∗m Ẽk[x̂σ(k)] .

Proof. For the first part, note that ◁D is the transitive
closure of ◁1

D where for x, y ∈ D, x◁1
D y when x+ ∩y− ̸= ∅.

Then, it is enough to show that xi ◁1
D xj implies i < j. By

contradiction, suppose that xj ◁1
D xi with i < j. By (T1),

several swaps of two generators using the second part of
lemma 28 can be applied and enable to reduce to the
case j = i + 1. Hence, Ei[x̂i] ∗m Ei+1[x̂i+1] exists and
⟨xi⟩m,− ∩ ⟨xi+1⟩m,+ = x−

i ∩ x+
i+1 ̸= ∅, contradicting the

first part of lemma 28. For the second part, since linear
extensions are generated by consecutive transpositions, it
is enough to consider the case where σ = (i, i + 1). Then,
the hypothesis enable to apply the second part of lemma 28
to swap x̂i and x̂i+1 in the composite X.

We show now that, in order for two contexts applied to
a generator to induce the same cell, it is enough for them
to have same source.

Lemma 30. Let x ∈ Pm+1 and E1, E2 n-contexts
with n ≤ m such that ∂−

n E1[x̂] = ∂−
n E2[x̂] or

∂+
n E1[x̂] = ∂+

n E2[x̂]. Then E1[x̂] = E2[x̂].

Proof. By induction on n, using lemma 27, we change E1
to match E2 while preserving the cell obtained by applying
E1 to x̂.

We can deduce that the functor I is injective when re-
stricted to (m+1)-cells:

Lemma 31. Given parallel (m+1)-cells X and Y in
Cell(P )+

≤m, if I(X)m+1 = I(Y )m+1 then X = Y .

Proof. By lemmas 25 and 26, we can write the cells as

X = E1[x̂1] ∗m ... ∗m Ek[x̂k] Y = Ẽ1[ŷ1] ∗m ... ∗m Ẽk[ŷk]

By permuting the generators using the second part of
lemma 29, we can moreover suppose that xi = yi for
1 ≤ i ≤ k. Then, by applying lemma 30, we get that
Ei[x̂i] = Ẽi[ŷi]. Hence, X = Y .

Finally, we can conclude the induction showing that
Cell(P )≤m+1 is a free extension of Cell(P )≤m by Pm+1:

Lemma 32. Cell(P )+
≤m is isomorphic to Cell(P )≤m+1.

Proof. By lemma 31, the functor I is injective. It is
moreover surjective: given X ∈ Cell(P )m+1, by lemma 25
and theorem 23, X can be written

X = E1[⟨x1⟩] ∗m ... ∗m Ek[⟨xk⟩]

the cell X is then the image of X ′ by I where

X ′ = E1[x̂1] ∗m ... ∗m Ek[x̂k]

and I is thus an isomorphism of (m+1)-categories.

Using those properties, we can show that our new def-
inition of pasting diagrams satisfies the desired freeness
property:

Theorem 33. Cell(P ) is freely generated by the set of
atoms {⟨x⟩ | x ∈ P}.

Proof. By lemma 32, for m ∈ N, Cell(P )≤m+1 is a free
extension of Cell(P )≤m by {⟨x⟩ | x ∈ Pm+1}. Cell(P ) is
thus freely generated by the atoms.

VII Conclusion and related works
In this article, we have shown that the freeness prop-

erty does not hold for parity complexes and proposed a
corrected notion for which it does. Another argument in
favor of this new structure is that it also relates to the main
other formalisms for pasting diagrams, allowing to study
their relationship, which should be detailed elsewhere [3].
In Johnson’s pasting schemes [6], cells are represented
by “closed finite graded sets”, which are essentially sub-
hypergraphs of the hypergraph of the pasting scheme.
Pasting schemes do not satisfy the freeness property since
the ω-hypergraph underlying (4) is also accepted as a
pasting scheme, but those satisfying (T4) can be embed-
ded in torsion-free complexes. Steiner’s augmented directed
complexes [11], which are based on complexes of groups
(with distinguished submonoids), can also be embedded
in torsion-free complexes. Our counter-example (4) to the
freeness property does not apply for those since the torsion
axiom is entailed by the “loop-freeness” condition imposed
on the basis.
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