Cutoff for the non reversible SSEP with reservoirs - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2023

Cutoff for the non reversible SSEP with reservoirs

Résumé

We consider the Symmetric Simple Exclusion Process (SSEP) on the segment with two reservoirs of densities $p, q \in (0,1)$ at the two endpoints. We show that the system exhibits cutoff with a diffusive window, thus confirming a conjecture of Gantert, Nestoridi, and Schmid in \cite{Gantert2020}. In particular, our result covers the regime $p \neq q$, where the process is not reversible and there is no known explicit formula for the invariant measure. Our proof exploits the information percolation framework introduced by Lubetzky and Sly, the negative dependence of the system, and an anticoncentration inequality at the conditional level. We believe this approach is applicable to other models.
Fichier principal
Vignette du fichier
final_version.pdf (377.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03878406 , version 1 (29-11-2022)

Licence

Identifiants

Citer

Hong-Quan Tran. Cutoff for the non reversible SSEP with reservoirs. Electronic Journal of Probability, 2023, 28 (152), pp.1-24. ⟨10.1214/23-EJP1044⟩. ⟨hal-03878406⟩
38 Consultations
40 Téléchargements

Altmetric

Partager

More