SATELLITE IMAGE QUALITY ASSESSMENT USING DEEP LEARNING - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

SATELLITE IMAGE QUALITY ASSESSMENT USING DEEP LEARNING

Résumé

The Modulation Transfer Function (MTF) is one of the key indicators regarding Image Quality of Earth Observation systems. It characterizes the level of contrast that can be maintained by the optical system and is monitored during the whole life of the satellite. Due to the strong acquisition constraints as well as the gradually complexity of its estimation with future systems, it becomes necessary to increase the reactivity with a method free of acquisition constraints. In this paper, we present a model able to estimate the absolute MTF (or blur) level as well as its prediction uncertainty without any reference image or user parameter using deep learning techniques.
Fichier principal
Vignette du fichier
APIA2021_paper_8.pdf (755.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03874228 , version 1 (27-11-2022)

Identifiants

  • HAL Id : hal-03874228 , version 1

Citer

Bouchra Harnoufi, Ségolène Bourrienne, Mathias Ortner, Renaud Fraisse. SATELLITE IMAGE QUALITY ASSESSMENT USING DEEP LEARNING. Conférence Nationale sur les Applications Pratiques de l'Intelligence Artificielle ( APIA2021 ), Jul 2021, Bordeaux, France. ⟨hal-03874228⟩
71 Consultations
142 Téléchargements

Partager

More