Conservation Laws and Hamilton-Jacobi Equations with Space Inhomogeneity - Archive ouverte HAL
Article Dans Une Revue Journal of Evolution Equations Année : 2023

Conservation Laws and Hamilton-Jacobi Equations with Space Inhomogeneity

Résumé

Conservation Laws with an $x$-dependent flux and Hamilton-Jacobi equations with an $x$-dependent Hamiltonian are considered within the same set of assumptions. Uniqueness and stability estimates are obtained only requiring sufficient smoothness of the flux/Hamiltonian. Existence is proved without any convexity assumptions under a mild coercivity hypothesis. The correspondence between the semigroups generated by these equations is fully detailed. With respect to the classical Kružkov approach to Conservation Laws, we relax the definition of solution and avoid any restriction on the growth of the flux. A key role is played by the construction of sufficiently many bounded entropy stationary solutions that provide global bounds in time and space.
Fichier principal
Vignette du fichier
s00028-023-00902-1.pdf (1.07 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03873174 , version 1 (26-11-2022)
hal-03873174 , version 2 (10-07-2023)

Licence

Identifiants

Citer

Rinaldo M. Colombo, Vincent Perrollaz, Abraham Sylla. Conservation Laws and Hamilton-Jacobi Equations with Space Inhomogeneity. Journal of Evolution Equations, 2023, 23, ⟨10.1007/s00028-023-00902-1⟩. ⟨hal-03873174v2⟩
208 Consultations
144 Téléchargements

Altmetric

Partager

More