Lexicographic Optimal Homologous Chains and Applications to Point Cloud Triangulations - Archive ouverte HAL
Article Dans Une Revue Discrete and Computational Geometry Année : 2022

Lexicographic Optimal Homologous Chains and Applications to Point Cloud Triangulations

Résumé

This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP) for integer modulo 2 coefficients, where optimality is meant as a minimal lexicographic order on chains induced by a total order on simplices. The matrix reduction algorithm used for persistent homology is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual graph minimum cut formulation when the simplicial complex is a pseudomanifold. We then show how this particular instance of the problem is relevant, by providing an application in the context of point cloud triangulation.
Fichier principal
Vignette du fichier
LexicographicAlgos.pdf (2.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03870128 , version 1 (24-11-2022)

Identifiants

Citer

David Cohen-Steiner, André Lieutier, Julien Vuillamy. Lexicographic Optimal Homologous Chains and Applications to Point Cloud Triangulations. Discrete and Computational Geometry, 2022, 68, ⟨10.1007/s00454-022-00432-6⟩. ⟨hal-03870128⟩
33 Consultations
93 Téléchargements

Altmetric

Partager

More