Decorate the Examples: A Simple Method of Prompt Design for Biomedical Relation Extraction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Decorate the Examples: A Simple Method of Prompt Design for Biomedical Relation Extraction

Hui-Syuan Yeh
  • Fonction : Auteur
  • PersonId : 1192435
Thomas Lavergne

Résumé

Relation extraction is a core problem for natural language processing in the biomedical domain. Recent research on relation extraction showed that prompt-based learning improves the performance on both fine-tuning on full training set and few-shot training. However, less effort has been made on domain-specific tasks where good prompt design can be even harder. In this paper, we investigate prompting for biomedical relation extraction, with experiments on the ChemProt dataset. We present a simple yet effective method to systematically generate comprehensive prompts that reformulate the relation extraction task as a cloze-test task under a simple prompt formulation. In particular, we experiment with different ranking scores for prompt selection. With BioMed-RoBERTa-base, our results show that prompting-based fine-tuning obtains gains by 14.21 F1 over its regular fine-tuning baseline. Besides, we find prompt-based learning requires fewer training examples to make reasonable predictions. The results demonstrate the potential of our methods in such a domainspecific relation extraction task.
Fichier principal
Vignette du fichier
Yeh_LREC2022R1.pdf (444.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03867421 , version 1 (23-11-2022)

Licence

Identifiants

  • HAL Id : hal-03867421 , version 1

Citer

Hui-Syuan Yeh, Thomas Lavergne, Pierre Zweigenbaum. Decorate the Examples: A Simple Method of Prompt Design for Biomedical Relation Extraction. LREC 2022 - Language Resources and Evaluation Conference, Jun 2022, Marseille, France. pp.3780-3787. ⟨hal-03867421⟩
79 Consultations
107 Téléchargements

Partager

More