Clustering analysis of railway driving missions with niching genetic algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Clustering analysis of railway driving missions with niching genetic algorithms

Amine Jaafar
Bruno Sareni
Xavier Roboam

Résumé

A large number of applications requires classifying or grouping data into a set of categories or clusters. Most popular clustering techniques to achieve this objective are K-means clustering and hierarchical clustering. However, both of these methods necessitate the a priori setting of the cluster number. In this paper, a clustering method based on the use of a niching algorithm is presented, with the aims of finding the best compromise between the inter-cluster distance maximization and the intra-cluster distance minimization. This method is applied to a standard test problem and to the classification of railway driving missions.
Fichier principal
Vignette du fichier
JaafarOIPE2010b.pdf (67.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03865575 , version 1 (20-12-2024)

Identifiants

  • HAL Id : hal-03865575 , version 1

Citer

Amine Jaafar, Bruno Sareni, Xavier Roboam. Clustering analysis of railway driving missions with niching genetic algorithms. 11th International Workshop on Optimization and Inverse Problems in Electromagnetism (OIPE 2010), Sep 2010, Sofia, Bulgaria. ⟨hal-03865575⟩
13 Consultations
0 Téléchargements

Partager

More