Positive First-Order Logic on Words and Graphs - Archive ouverte HAL
N°Spécial De Revue/Special Issue Logical Methods in Computer Science Année : 2023

Positive First-Order Logic on Words and Graphs

Résumé

We study FO + , a fragment of first-order logic on finite words, where monadic predicates can only appear positively. We show that there is an FO-definable language that is monotone in monadic predicates but not definable in FO +. This provides a simple proof that Lyndon's preservation theorem fails on finite structures. We lift this example language to finite graphs, thereby providing a new result of independent interest for FO-definable graph classes: negation might be needed even when the class is closed under addition of edges. We finally show that given a regular language of finite words, it is undecidable whether it is definable in FO + .
Fichier principal
Vignette du fichier
main.pdf (531.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03865495 , version 1 (22-11-2022)
hal-03865495 , version 2 (17-11-2023)

Identifiants

  • HAL Id : hal-03865495 , version 1

Citer

Denis Kuperberg. Positive First-Order Logic on Words and Graphs. Logical Methods in Computer Science, 19 (3), pp.7:1 - 7:35, 2023. ⟨hal-03865495v1⟩
47 Consultations
34 Téléchargements

Partager

More